1 | // -*- C++ -*- |
---|
2 | #ifndef HUGO_MAX_FLOW_NO_STACK_H |
---|
3 | #define HUGO_MAX_FLOW_NO_STACK_H |
---|
4 | |
---|
5 | #include <vector> |
---|
6 | #include <queue> |
---|
7 | //#include <stack> |
---|
8 | |
---|
9 | #include <hugo/graph_wrapper.h> |
---|
10 | #include <hugo/invalid.h> |
---|
11 | #include <hugo/maps.h> |
---|
12 | |
---|
13 | /// \file |
---|
14 | /// \brief The same as max_flow.h, but without using stl stack for the active nodes. Only for test. |
---|
15 | /// \ingroup galgs |
---|
16 | |
---|
17 | namespace hugo { |
---|
18 | |
---|
19 | /// \addtogroup galgs |
---|
20 | /// @{ |
---|
21 | ///Maximum flow algorithms class. |
---|
22 | |
---|
23 | ///This class provides various algorithms for finding a flow of |
---|
24 | ///maximum value in a directed graph. The \e source node, the \e |
---|
25 | ///target node, the \e capacity of the edges and the \e starting \e |
---|
26 | ///flow value of the edges should be passed to the algorithm through the |
---|
27 | ///constructor. It is possible to change these quantities using the |
---|
28 | ///functions \ref resetSource, \ref resetTarget, \ref resetCap and |
---|
29 | ///\ref resetFlow. Before any subsequent runs of any algorithm of |
---|
30 | ///the class \ref resetFlow should be called. |
---|
31 | |
---|
32 | ///After running an algorithm of the class, the actual flow value |
---|
33 | ///can be obtained by calling \ref flowValue(). The minimum |
---|
34 | ///value cut can be written into a \c node map of \c bools by |
---|
35 | ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes |
---|
36 | ///the inclusionwise minimum and maximum of the minimum value |
---|
37 | ///cuts, resp.) |
---|
38 | ///\param Graph The directed graph type the algorithm runs on. |
---|
39 | ///\param Num The number type of the capacities and the flow values. |
---|
40 | ///\param CapMap The capacity map type. |
---|
41 | ///\param FlowMap The flow map type. |
---|
42 | ///\author Marton Makai, Jacint Szabo |
---|
43 | template <typename Graph, typename Num, |
---|
44 | typename CapMap=typename Graph::template EdgeMap<Num>, |
---|
45 | typename FlowMap=typename Graph::template EdgeMap<Num> > |
---|
46 | class MaxFlow { |
---|
47 | protected: |
---|
48 | typedef typename Graph::Node Node; |
---|
49 | typedef typename Graph::NodeIt NodeIt; |
---|
50 | typedef typename Graph::EdgeIt EdgeIt; |
---|
51 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
52 | typedef typename Graph::InEdgeIt InEdgeIt; |
---|
53 | |
---|
54 | // typedef typename std::vector<std::stack<Node> > VecStack; |
---|
55 | typedef typename std::vector<Node> VecFirst; |
---|
56 | typedef typename Graph::template NodeMap<Node> NNMap; |
---|
57 | typedef typename std::vector<Node> VecNode; |
---|
58 | |
---|
59 | const Graph* g; |
---|
60 | Node s; |
---|
61 | Node t; |
---|
62 | const CapMap* capacity; |
---|
63 | FlowMap* flow; |
---|
64 | int n; //the number of nodes of G |
---|
65 | typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; |
---|
66 | //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; |
---|
67 | typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; |
---|
68 | typedef typename ResGW::Edge ResGWEdge; |
---|
69 | //typedef typename ResGW::template NodeMap<bool> ReachedMap; |
---|
70 | typedef typename Graph::template NodeMap<int> ReachedMap; |
---|
71 | |
---|
72 | |
---|
73 | //level works as a bool map in augmenting path algorithms and is |
---|
74 | //used by bfs for storing reached information. In preflow, it |
---|
75 | //shows the levels of nodes. |
---|
76 | ReachedMap level; |
---|
77 | |
---|
78 | //excess is needed only in preflow |
---|
79 | typename Graph::template NodeMap<Num> excess; |
---|
80 | |
---|
81 | // constants used for heuristics |
---|
82 | static const int H0=20; |
---|
83 | static const int H1=1; |
---|
84 | |
---|
85 | public: |
---|
86 | |
---|
87 | ///Indicates the property of the starting flow. |
---|
88 | |
---|
89 | ///Indicates the property of the starting flow. The meanings are as follows: |
---|
90 | ///- \c ZERO_FLOW: constant zero flow |
---|
91 | ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to |
---|
92 | ///the sum of the out-flows in every node except the \e source and |
---|
93 | ///the \e target. |
---|
94 | ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at |
---|
95 | ///least the sum of the out-flows in every node except the \e source. |
---|
96 | ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be |
---|
97 | ///set to the constant zero flow in the beginning of the algorithm in this case. |
---|
98 | enum FlowEnum{ |
---|
99 | ZERO_FLOW, |
---|
100 | GEN_FLOW, |
---|
101 | PRE_FLOW, |
---|
102 | NO_FLOW |
---|
103 | }; |
---|
104 | |
---|
105 | enum StatusEnum { |
---|
106 | AFTER_NOTHING, |
---|
107 | AFTER_AUGMENTING, |
---|
108 | AFTER_FAST_AUGMENTING, |
---|
109 | AFTER_PRE_FLOW_PHASE_1, |
---|
110 | AFTER_PRE_FLOW_PHASE_2 |
---|
111 | }; |
---|
112 | |
---|
113 | /// Don not needle this flag only if necessary. |
---|
114 | StatusEnum status; |
---|
115 | |
---|
116 | // int number_of_augmentations; |
---|
117 | |
---|
118 | |
---|
119 | // template<typename IntMap> |
---|
120 | // class TrickyReachedMap { |
---|
121 | // protected: |
---|
122 | // IntMap* map; |
---|
123 | // int* number_of_augmentations; |
---|
124 | // public: |
---|
125 | // TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : |
---|
126 | // map(&_map), number_of_augmentations(&_number_of_augmentations) { } |
---|
127 | // void set(const Node& n, bool b) { |
---|
128 | // if (b) |
---|
129 | // map->set(n, *number_of_augmentations); |
---|
130 | // else |
---|
131 | // map->set(n, *number_of_augmentations-1); |
---|
132 | // } |
---|
133 | // bool operator[](const Node& n) const { |
---|
134 | // return (*map)[n]==*number_of_augmentations; |
---|
135 | // } |
---|
136 | // }; |
---|
137 | |
---|
138 | ///Constructor |
---|
139 | |
---|
140 | ///\todo Document, please. |
---|
141 | /// |
---|
142 | MaxFlow(const Graph& _G, Node _s, Node _t, |
---|
143 | const CapMap& _capacity, FlowMap& _flow) : |
---|
144 | g(&_G), s(_s), t(_t), capacity(&_capacity), |
---|
145 | flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), |
---|
146 | status(AFTER_NOTHING) { } |
---|
147 | |
---|
148 | ///Runs a maximum flow algorithm. |
---|
149 | |
---|
150 | ///Runs a preflow algorithm, which is the fastest maximum flow |
---|
151 | ///algorithm up-to-date. The default for \c fe is ZERO_FLOW. |
---|
152 | ///\pre The starting flow must be |
---|
153 | /// - a constant zero flow if \c fe is \c ZERO_FLOW, |
---|
154 | /// - an arbitary flow if \c fe is \c GEN_FLOW, |
---|
155 | /// - an arbitary preflow if \c fe is \c PRE_FLOW, |
---|
156 | /// - any map if \c fe is NO_FLOW. |
---|
157 | void run(FlowEnum fe=ZERO_FLOW) { |
---|
158 | preflow(fe); |
---|
159 | } |
---|
160 | |
---|
161 | |
---|
162 | ///Runs a preflow algorithm. |
---|
163 | |
---|
164 | ///Runs a preflow algorithm. The preflow algorithms provide the |
---|
165 | ///fastest way to compute a maximum flow in a directed graph. |
---|
166 | ///\pre The starting flow must be |
---|
167 | /// - a constant zero flow if \c fe is \c ZERO_FLOW, |
---|
168 | /// - an arbitary flow if \c fe is \c GEN_FLOW, |
---|
169 | /// - an arbitary preflow if \c fe is \c PRE_FLOW, |
---|
170 | /// - any map if \c fe is NO_FLOW. |
---|
171 | /// |
---|
172 | ///\todo NO_FLOW should be the default flow. |
---|
173 | void preflow(FlowEnum fe) { |
---|
174 | preflowPhase1(fe); |
---|
175 | preflowPhase2(); |
---|
176 | } |
---|
177 | // Heuristics: |
---|
178 | // 2 phase |
---|
179 | // gap |
---|
180 | // list 'level_list' on the nodes on level i implemented by hand |
---|
181 | // stack 'active' on the active nodes on level i |
---|
182 | // runs heuristic 'highest label' for H1*n relabels |
---|
183 | // runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' |
---|
184 | // Parameters H0 and H1 are initialized to 20 and 1. |
---|
185 | |
---|
186 | ///Runs the first phase of the preflow algorithm. |
---|
187 | |
---|
188 | ///The preflow algorithm consists of two phases, this method runs the |
---|
189 | ///first phase. After the first phase the maximum flow value and a |
---|
190 | ///minimum value cut can already be computed, though a maximum flow |
---|
191 | ///is net yet obtained. So after calling this method \ref flowValue |
---|
192 | ///and \ref actMinCut gives proper results. |
---|
193 | ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not |
---|
194 | ///give minimum value cuts unless calling \ref preflowPhase2. |
---|
195 | ///\pre The starting flow must be |
---|
196 | /// - a constant zero flow if \c fe is \c ZERO_FLOW, |
---|
197 | /// - an arbitary flow if \c fe is \c GEN_FLOW, |
---|
198 | /// - an arbitary preflow if \c fe is \c PRE_FLOW, |
---|
199 | /// - any map if \c fe is NO_FLOW. |
---|
200 | void preflowPhase1(FlowEnum fe) |
---|
201 | { |
---|
202 | |
---|
203 | int heur0=(int)(H0*n); //time while running 'bound decrease' |
---|
204 | int heur1=(int)(H1*n); //time while running 'highest label' |
---|
205 | int heur=heur1; //starting time interval (#of relabels) |
---|
206 | int numrelabel=0; |
---|
207 | |
---|
208 | bool what_heur=1; |
---|
209 | //It is 0 in case 'bound decrease' and 1 in case 'highest label' |
---|
210 | |
---|
211 | bool end=false; |
---|
212 | //Needed for 'bound decrease', true means no active nodes are above bound |
---|
213 | //b. |
---|
214 | |
---|
215 | int k=n-2; //bound on the highest level under n containing a node |
---|
216 | int b=k; //bound on the highest level under n of an active node |
---|
217 | |
---|
218 | VecFirst first(n, INVALID); |
---|
219 | NNMap next(*g, INVALID); //maybe INVALID is not needed |
---|
220 | // VecStack active(n); |
---|
221 | |
---|
222 | NNMap left(*g, INVALID); |
---|
223 | NNMap right(*g, INVALID); |
---|
224 | VecNode level_list(n,INVALID); |
---|
225 | //List of the nodes in level i<n, set to n. |
---|
226 | |
---|
227 | NodeIt v; |
---|
228 | for(g->first(v); g->valid(v); g->next(v)) level.set(v,n); |
---|
229 | //setting each node to level n |
---|
230 | |
---|
231 | if ( fe == NO_FLOW ) { |
---|
232 | EdgeIt e; |
---|
233 | for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0); |
---|
234 | } |
---|
235 | |
---|
236 | switch (fe) { //computing the excess |
---|
237 | case PRE_FLOW: |
---|
238 | { |
---|
239 | NodeIt v; |
---|
240 | for(g->first(v); g->valid(v); g->next(v)) { |
---|
241 | Num exc=0; |
---|
242 | |
---|
243 | InEdgeIt e; |
---|
244 | for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e]; |
---|
245 | OutEdgeIt f; |
---|
246 | for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f]; |
---|
247 | |
---|
248 | excess.set(v,exc); |
---|
249 | |
---|
250 | //putting the active nodes into the stack |
---|
251 | int lev=level[v]; |
---|
252 | if ( exc > 0 && lev < n && v != t ) |
---|
253 | { |
---|
254 | next.set(v,first[lev]); |
---|
255 | first[lev]=v; |
---|
256 | } |
---|
257 | // active[lev].push(v); |
---|
258 | } |
---|
259 | break; |
---|
260 | } |
---|
261 | case GEN_FLOW: |
---|
262 | { |
---|
263 | NodeIt v; |
---|
264 | for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0); |
---|
265 | |
---|
266 | Num exc=0; |
---|
267 | InEdgeIt e; |
---|
268 | for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e]; |
---|
269 | OutEdgeIt f; |
---|
270 | for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f]; |
---|
271 | excess.set(t,exc); |
---|
272 | break; |
---|
273 | } |
---|
274 | case ZERO_FLOW: |
---|
275 | case NO_FLOW: |
---|
276 | { |
---|
277 | NodeIt v; |
---|
278 | for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0); |
---|
279 | break; |
---|
280 | } |
---|
281 | } |
---|
282 | |
---|
283 | preflowPreproc(fe, next, first,/*active*/ level_list, left, right); |
---|
284 | //End of preprocessing |
---|
285 | |
---|
286 | |
---|
287 | //Push/relabel on the highest level active nodes. |
---|
288 | while ( true ) { |
---|
289 | if ( b == 0 ) { |
---|
290 | if ( !what_heur && !end && k > 0 ) { |
---|
291 | b=k; |
---|
292 | end=true; |
---|
293 | } else break; |
---|
294 | } |
---|
295 | |
---|
296 | if ( !g->valid(first[b])/*active[b].empty()*/ ) --b; |
---|
297 | else { |
---|
298 | end=false; |
---|
299 | Node w=first[b]; |
---|
300 | first[b]=next[w]; |
---|
301 | /* Node w=active[b].top(); |
---|
302 | active[b].pop();*/ |
---|
303 | int newlevel=push(w,/*active*/next, first); |
---|
304 | if ( excess[w] > 0 ) relabel(w, newlevel, /*active*/next, first, level_list, |
---|
305 | left, right, b, k, what_heur); |
---|
306 | |
---|
307 | ++numrelabel; |
---|
308 | if ( numrelabel >= heur ) { |
---|
309 | numrelabel=0; |
---|
310 | if ( what_heur ) { |
---|
311 | what_heur=0; |
---|
312 | heur=heur0; |
---|
313 | end=false; |
---|
314 | } else { |
---|
315 | what_heur=1; |
---|
316 | heur=heur1; |
---|
317 | b=k; |
---|
318 | } |
---|
319 | } |
---|
320 | } |
---|
321 | } |
---|
322 | |
---|
323 | status=AFTER_PRE_FLOW_PHASE_1; |
---|
324 | } |
---|
325 | |
---|
326 | |
---|
327 | ///Runs the second phase of the preflow algorithm. |
---|
328 | |
---|
329 | ///The preflow algorithm consists of two phases, this method runs |
---|
330 | ///the second phase. After calling \ref preflowPhase1 and then |
---|
331 | ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut, |
---|
332 | ///\ref minMinCut and \ref maxMinCut give proper results. |
---|
333 | ///\pre \ref preflowPhase1 must be called before. |
---|
334 | void preflowPhase2() |
---|
335 | { |
---|
336 | |
---|
337 | int k=n-2; //bound on the highest level under n containing a node |
---|
338 | int b=k; //bound on the highest level under n of an active node |
---|
339 | |
---|
340 | |
---|
341 | VecFirst first(n, INVALID); |
---|
342 | NNMap next(*g, INVALID); //maybe INVALID is not needed |
---|
343 | // VecStack active(n); |
---|
344 | level.set(s,0); |
---|
345 | std::queue<Node> bfs_queue; |
---|
346 | bfs_queue.push(s); |
---|
347 | |
---|
348 | while (!bfs_queue.empty()) { |
---|
349 | |
---|
350 | Node v=bfs_queue.front(); |
---|
351 | bfs_queue.pop(); |
---|
352 | int l=level[v]+1; |
---|
353 | |
---|
354 | InEdgeIt e; |
---|
355 | for(g->first(e,v); g->valid(e); g->next(e)) { |
---|
356 | if ( (*capacity)[e] <= (*flow)[e] ) continue; |
---|
357 | Node u=g->tail(e); |
---|
358 | if ( level[u] >= n ) { |
---|
359 | bfs_queue.push(u); |
---|
360 | level.set(u, l); |
---|
361 | if ( excess[u] > 0 ) { |
---|
362 | next.set(u,first[l]); |
---|
363 | first[l]=u; |
---|
364 | //active[l].push(u); |
---|
365 | } |
---|
366 | } |
---|
367 | } |
---|
368 | |
---|
369 | OutEdgeIt f; |
---|
370 | for(g->first(f,v); g->valid(f); g->next(f)) { |
---|
371 | if ( 0 >= (*flow)[f] ) continue; |
---|
372 | Node u=g->head(f); |
---|
373 | if ( level[u] >= n ) { |
---|
374 | bfs_queue.push(u); |
---|
375 | level.set(u, l); |
---|
376 | if ( excess[u] > 0 ) { |
---|
377 | next.set(u,first[l]); |
---|
378 | first[l]=u; |
---|
379 | //active[l].push(u); |
---|
380 | } |
---|
381 | } |
---|
382 | } |
---|
383 | } |
---|
384 | b=n-2; |
---|
385 | |
---|
386 | while ( true ) { |
---|
387 | |
---|
388 | if ( b == 0 ) break; |
---|
389 | |
---|
390 | if ( !g->valid(first[b])/*active[b].empty()*/ ) --b; |
---|
391 | else { |
---|
392 | |
---|
393 | Node w=first[b]; |
---|
394 | first[b]=next[w]; |
---|
395 | /* Node w=active[b].top(); |
---|
396 | active[b].pop();*/ |
---|
397 | int newlevel=push(w,next, first/*active*/); |
---|
398 | |
---|
399 | //relabel |
---|
400 | if ( excess[w] > 0 ) { |
---|
401 | level.set(w,++newlevel); |
---|
402 | next.set(w,first[newlevel]); |
---|
403 | first[newlevel]=w; |
---|
404 | //active[newlevel].push(w); |
---|
405 | b=newlevel; |
---|
406 | } |
---|
407 | } // if stack[b] is nonempty |
---|
408 | } // while(true) |
---|
409 | |
---|
410 | status=AFTER_PRE_FLOW_PHASE_2; |
---|
411 | } |
---|
412 | |
---|
413 | |
---|
414 | /// Returns the maximum value of a flow. |
---|
415 | |
---|
416 | /// Returns the maximum value of a flow, by counting the |
---|
417 | /// over-flow of the target node \ref t. |
---|
418 | /// It can be called already after running \ref preflowPhase1. |
---|
419 | Num flowValue() const { |
---|
420 | Num a=0; |
---|
421 | for(InEdgeIt e(*g,t);g->valid(e);g->next(e)) a+=(*flow)[e]; |
---|
422 | for(OutEdgeIt e(*g,t);g->valid(e);g->next(e)) a-=(*flow)[e]; |
---|
423 | |
---|
424 | //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan |
---|
425 | } |
---|
426 | |
---|
427 | ///Returns a minimum value cut after calling \ref preflowPhase1. |
---|
428 | |
---|
429 | ///After the first phase of the preflow algorithm the maximum flow |
---|
430 | ///value and a minimum value cut can already be computed. This |
---|
431 | ///method can be called after running \ref preflowPhase1 for |
---|
432 | ///obtaining a minimum value cut. |
---|
433 | /// \warning Gives proper result only right after calling \ref |
---|
434 | /// preflowPhase1. |
---|
435 | /// \todo We have to make some status variable which shows the |
---|
436 | /// actual state |
---|
437 | /// of the class. This enables us to determine which methods are valid |
---|
438 | /// for MinCut computation |
---|
439 | template<typename _CutMap> |
---|
440 | void actMinCut(_CutMap& M) const { |
---|
441 | NodeIt v; |
---|
442 | switch (status) { |
---|
443 | case AFTER_PRE_FLOW_PHASE_1: |
---|
444 | for(g->first(v); g->valid(v); g->next(v)) { |
---|
445 | if (level[v] < n) { |
---|
446 | M.set(v, false); |
---|
447 | } else { |
---|
448 | M.set(v, true); |
---|
449 | } |
---|
450 | } |
---|
451 | break; |
---|
452 | case AFTER_PRE_FLOW_PHASE_2: |
---|
453 | case AFTER_NOTHING: |
---|
454 | minMinCut(M); |
---|
455 | break; |
---|
456 | } |
---|
457 | } |
---|
458 | |
---|
459 | ///Returns the inclusionwise minimum of the minimum value cuts. |
---|
460 | |
---|
461 | ///Sets \c M to the characteristic vector of the minimum value cut |
---|
462 | ///which is inclusionwise minimum. It is computed by processing |
---|
463 | ///a bfs from the source node \c s in the residual graph. |
---|
464 | ///\pre M should be a node map of bools initialized to false. |
---|
465 | ///\pre \c flow must be a maximum flow. |
---|
466 | template<typename _CutMap> |
---|
467 | void minMinCut(_CutMap& M) const { |
---|
468 | std::queue<Node> queue; |
---|
469 | |
---|
470 | M.set(s,true); |
---|
471 | queue.push(s); |
---|
472 | |
---|
473 | while (!queue.empty()) { |
---|
474 | Node w=queue.front(); |
---|
475 | queue.pop(); |
---|
476 | |
---|
477 | OutEdgeIt e; |
---|
478 | for(g->first(e,w) ; g->valid(e); g->next(e)) { |
---|
479 | Node v=g->head(e); |
---|
480 | if (!M[v] && (*flow)[e] < (*capacity)[e] ) { |
---|
481 | queue.push(v); |
---|
482 | M.set(v, true); |
---|
483 | } |
---|
484 | } |
---|
485 | |
---|
486 | InEdgeIt f; |
---|
487 | for(g->first(f,w) ; g->valid(f); g->next(f)) { |
---|
488 | Node v=g->tail(f); |
---|
489 | if (!M[v] && (*flow)[f] > 0 ) { |
---|
490 | queue.push(v); |
---|
491 | M.set(v, true); |
---|
492 | } |
---|
493 | } |
---|
494 | } |
---|
495 | } |
---|
496 | |
---|
497 | ///Returns the inclusionwise maximum of the minimum value cuts. |
---|
498 | |
---|
499 | ///Sets \c M to the characteristic vector of the minimum value cut |
---|
500 | ///which is inclusionwise maximum. It is computed by processing a |
---|
501 | ///backward bfs from the target node \c t in the residual graph. |
---|
502 | ///\pre M should be a node map of bools initialized to false. |
---|
503 | ///\pre \c flow must be a maximum flow. |
---|
504 | template<typename _CutMap> |
---|
505 | void maxMinCut(_CutMap& M) const { |
---|
506 | |
---|
507 | NodeIt v; |
---|
508 | for(g->first(v) ; g->valid(v); g->next(v)) { |
---|
509 | M.set(v, true); |
---|
510 | } |
---|
511 | |
---|
512 | std::queue<Node> queue; |
---|
513 | |
---|
514 | M.set(t,false); |
---|
515 | queue.push(t); |
---|
516 | |
---|
517 | while (!queue.empty()) { |
---|
518 | Node w=queue.front(); |
---|
519 | queue.pop(); |
---|
520 | |
---|
521 | InEdgeIt e; |
---|
522 | for(g->first(e,w) ; g->valid(e); g->next(e)) { |
---|
523 | Node v=g->tail(e); |
---|
524 | if (M[v] && (*flow)[e] < (*capacity)[e] ) { |
---|
525 | queue.push(v); |
---|
526 | M.set(v, false); |
---|
527 | } |
---|
528 | } |
---|
529 | |
---|
530 | OutEdgeIt f; |
---|
531 | for(g->first(f,w) ; g->valid(f); g->next(f)) { |
---|
532 | Node v=g->head(f); |
---|
533 | if (M[v] && (*flow)[f] > 0 ) { |
---|
534 | queue.push(v); |
---|
535 | M.set(v, false); |
---|
536 | } |
---|
537 | } |
---|
538 | } |
---|
539 | } |
---|
540 | |
---|
541 | ///Returns a minimum value cut. |
---|
542 | |
---|
543 | ///Sets \c M to the characteristic vector of a minimum value cut. |
---|
544 | ///\pre M should be a node map of bools initialized to false. |
---|
545 | ///\pre \c flow must be a maximum flow. |
---|
546 | template<typename CutMap> |
---|
547 | void minCut(CutMap& M) const { minMinCut(M); } |
---|
548 | |
---|
549 | ///Resets the source node to \c _s. |
---|
550 | |
---|
551 | ///Resets the source node to \c _s. |
---|
552 | /// |
---|
553 | void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; } |
---|
554 | |
---|
555 | ///Resets the target node to \c _t. |
---|
556 | |
---|
557 | ///Resets the target node to \c _t. |
---|
558 | /// |
---|
559 | void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; } |
---|
560 | |
---|
561 | /// Resets the edge map of the capacities to _cap. |
---|
562 | |
---|
563 | /// Resets the edge map of the capacities to _cap. |
---|
564 | /// |
---|
565 | void resetCap(const CapMap& _cap) |
---|
566 | { capacity=&_cap; status=AFTER_NOTHING; } |
---|
567 | |
---|
568 | /// Resets the edge map of the flows to _flow. |
---|
569 | |
---|
570 | /// Resets the edge map of the flows to _flow. |
---|
571 | /// |
---|
572 | void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; } |
---|
573 | |
---|
574 | |
---|
575 | private: |
---|
576 | |
---|
577 | int push(Node w, NNMap& next, VecFirst& first) { |
---|
578 | |
---|
579 | int lev=level[w]; |
---|
580 | Num exc=excess[w]; |
---|
581 | int newlevel=n; //bound on the next level of w |
---|
582 | |
---|
583 | OutEdgeIt e; |
---|
584 | for(g->first(e,w); g->valid(e); g->next(e)) { |
---|
585 | |
---|
586 | if ( (*flow)[e] >= (*capacity)[e] ) continue; |
---|
587 | Node v=g->head(e); |
---|
588 | |
---|
589 | if( lev > level[v] ) { //Push is allowed now |
---|
590 | |
---|
591 | if ( excess[v]<=0 && v!=t && v!=s ) { |
---|
592 | next.set(v,first[level[v]]); |
---|
593 | first[level[v]]=v; |
---|
594 | // int lev_v=level[v]; |
---|
595 | //active[lev_v].push(v); |
---|
596 | } |
---|
597 | |
---|
598 | Num cap=(*capacity)[e]; |
---|
599 | Num flo=(*flow)[e]; |
---|
600 | Num remcap=cap-flo; |
---|
601 | |
---|
602 | if ( remcap >= exc ) { //A nonsaturating push. |
---|
603 | |
---|
604 | flow->set(e, flo+exc); |
---|
605 | excess.set(v, excess[v]+exc); |
---|
606 | exc=0; |
---|
607 | break; |
---|
608 | |
---|
609 | } else { //A saturating push. |
---|
610 | flow->set(e, cap); |
---|
611 | excess.set(v, excess[v]+remcap); |
---|
612 | exc-=remcap; |
---|
613 | } |
---|
614 | } else if ( newlevel > level[v] ) newlevel = level[v]; |
---|
615 | } //for out edges wv |
---|
616 | |
---|
617 | if ( exc > 0 ) { |
---|
618 | InEdgeIt e; |
---|
619 | for(g->first(e,w); g->valid(e); g->next(e)) { |
---|
620 | |
---|
621 | if( (*flow)[e] <= 0 ) continue; |
---|
622 | Node v=g->tail(e); |
---|
623 | |
---|
624 | if( lev > level[v] ) { //Push is allowed now |
---|
625 | |
---|
626 | if ( excess[v]<=0 && v!=t && v!=s ) { |
---|
627 | next.set(v,first[level[v]]); |
---|
628 | first[level[v]]=v; |
---|
629 | //int lev_v=level[v]; |
---|
630 | //active[lev_v].push(v); |
---|
631 | } |
---|
632 | |
---|
633 | Num flo=(*flow)[e]; |
---|
634 | |
---|
635 | if ( flo >= exc ) { //A nonsaturating push. |
---|
636 | |
---|
637 | flow->set(e, flo-exc); |
---|
638 | excess.set(v, excess[v]+exc); |
---|
639 | exc=0; |
---|
640 | break; |
---|
641 | } else { //A saturating push. |
---|
642 | |
---|
643 | excess.set(v, excess[v]+flo); |
---|
644 | exc-=flo; |
---|
645 | flow->set(e,0); |
---|
646 | } |
---|
647 | } else if ( newlevel > level[v] ) newlevel = level[v]; |
---|
648 | } //for in edges vw |
---|
649 | |
---|
650 | } // if w still has excess after the out edge for cycle |
---|
651 | |
---|
652 | excess.set(w, exc); |
---|
653 | |
---|
654 | return newlevel; |
---|
655 | } |
---|
656 | |
---|
657 | |
---|
658 | void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first, |
---|
659 | VecNode& level_list, NNMap& left, NNMap& right) |
---|
660 | { |
---|
661 | std::queue<Node> bfs_queue; |
---|
662 | |
---|
663 | switch (fe) { |
---|
664 | case NO_FLOW: //flow is already set to const zero in this case |
---|
665 | case ZERO_FLOW: |
---|
666 | { |
---|
667 | //Reverse_bfs from t, to find the starting level. |
---|
668 | level.set(t,0); |
---|
669 | bfs_queue.push(t); |
---|
670 | |
---|
671 | while (!bfs_queue.empty()) { |
---|
672 | |
---|
673 | Node v=bfs_queue.front(); |
---|
674 | bfs_queue.pop(); |
---|
675 | int l=level[v]+1; |
---|
676 | |
---|
677 | InEdgeIt e; |
---|
678 | for(g->first(e,v); g->valid(e); g->next(e)) { |
---|
679 | Node w=g->tail(e); |
---|
680 | if ( level[w] == n && w != s ) { |
---|
681 | bfs_queue.push(w); |
---|
682 | Node z=level_list[l]; |
---|
683 | if ( g->valid(z) ) left.set(z,w); |
---|
684 | right.set(w,z); |
---|
685 | level_list[l]=w; |
---|
686 | level.set(w, l); |
---|
687 | } |
---|
688 | } |
---|
689 | } |
---|
690 | |
---|
691 | //the starting flow |
---|
692 | OutEdgeIt e; |
---|
693 | for(g->first(e,s); g->valid(e); g->next(e)) |
---|
694 | { |
---|
695 | Num c=(*capacity)[e]; |
---|
696 | if ( c <= 0 ) continue; |
---|
697 | Node w=g->head(e); |
---|
698 | if ( level[w] < n ) { |
---|
699 | if ( excess[w] <= 0 && w!=t ) |
---|
700 | { |
---|
701 | next.set(w,first[level[w]]); |
---|
702 | first[level[w]]=w; |
---|
703 | //active[level[w]].push(w); |
---|
704 | } |
---|
705 | flow->set(e, c); |
---|
706 | excess.set(w, excess[w]+c); |
---|
707 | } |
---|
708 | } |
---|
709 | break; |
---|
710 | } |
---|
711 | |
---|
712 | case GEN_FLOW: |
---|
713 | case PRE_FLOW: |
---|
714 | { |
---|
715 | //Reverse_bfs from t in the residual graph, |
---|
716 | //to find the starting level. |
---|
717 | level.set(t,0); |
---|
718 | bfs_queue.push(t); |
---|
719 | |
---|
720 | while (!bfs_queue.empty()) { |
---|
721 | |
---|
722 | Node v=bfs_queue.front(); |
---|
723 | bfs_queue.pop(); |
---|
724 | int l=level[v]+1; |
---|
725 | |
---|
726 | InEdgeIt e; |
---|
727 | for(g->first(e,v); g->valid(e); g->next(e)) { |
---|
728 | if ( (*capacity)[e] <= (*flow)[e] ) continue; |
---|
729 | Node w=g->tail(e); |
---|
730 | if ( level[w] == n && w != s ) { |
---|
731 | bfs_queue.push(w); |
---|
732 | Node z=level_list[l]; |
---|
733 | if ( g->valid(z) ) left.set(z,w); |
---|
734 | right.set(w,z); |
---|
735 | level_list[l]=w; |
---|
736 | level.set(w, l); |
---|
737 | } |
---|
738 | } |
---|
739 | |
---|
740 | OutEdgeIt f; |
---|
741 | for(g->first(f,v); g->valid(f); g->next(f)) { |
---|
742 | if ( 0 >= (*flow)[f] ) continue; |
---|
743 | Node w=g->head(f); |
---|
744 | if ( level[w] == n && w != s ) { |
---|
745 | bfs_queue.push(w); |
---|
746 | Node z=level_list[l]; |
---|
747 | if ( g->valid(z) ) left.set(z,w); |
---|
748 | right.set(w,z); |
---|
749 | level_list[l]=w; |
---|
750 | level.set(w, l); |
---|
751 | } |
---|
752 | } |
---|
753 | } |
---|
754 | |
---|
755 | |
---|
756 | //the starting flow |
---|
757 | OutEdgeIt e; |
---|
758 | for(g->first(e,s); g->valid(e); g->next(e)) |
---|
759 | { |
---|
760 | Num rem=(*capacity)[e]-(*flow)[e]; |
---|
761 | if ( rem <= 0 ) continue; |
---|
762 | Node w=g->head(e); |
---|
763 | if ( level[w] < n ) { |
---|
764 | if ( excess[w] <= 0 && w!=t ) |
---|
765 | { |
---|
766 | next.set(w,first[level[w]]); |
---|
767 | first[level[w]]=w; |
---|
768 | //active[level[w]].push(w); |
---|
769 | } |
---|
770 | flow->set(e, (*capacity)[e]); |
---|
771 | excess.set(w, excess[w]+rem); |
---|
772 | } |
---|
773 | } |
---|
774 | |
---|
775 | InEdgeIt f; |
---|
776 | for(g->first(f,s); g->valid(f); g->next(f)) |
---|
777 | { |
---|
778 | if ( (*flow)[f] <= 0 ) continue; |
---|
779 | Node w=g->tail(f); |
---|
780 | if ( level[w] < n ) { |
---|
781 | if ( excess[w] <= 0 && w!=t ) |
---|
782 | { |
---|
783 | next.set(w,first[level[w]]); |
---|
784 | first[level[w]]=w; |
---|
785 | //active[level[w]].push(w); |
---|
786 | } |
---|
787 | excess.set(w, excess[w]+(*flow)[f]); |
---|
788 | flow->set(f, 0); |
---|
789 | } |
---|
790 | } |
---|
791 | break; |
---|
792 | } //case PRE_FLOW |
---|
793 | } |
---|
794 | } //preflowPreproc |
---|
795 | |
---|
796 | |
---|
797 | |
---|
798 | void relabel(Node w, int newlevel, NNMap& next, VecFirst& first, |
---|
799 | VecNode& level_list, NNMap& left, |
---|
800 | NNMap& right, int& b, int& k, bool what_heur ) |
---|
801 | { |
---|
802 | |
---|
803 | Num lev=level[w]; |
---|
804 | |
---|
805 | Node right_n=right[w]; |
---|
806 | Node left_n=left[w]; |
---|
807 | |
---|
808 | //unlacing starts |
---|
809 | if ( g->valid(right_n) ) { |
---|
810 | if ( g->valid(left_n) ) { |
---|
811 | right.set(left_n, right_n); |
---|
812 | left.set(right_n, left_n); |
---|
813 | } else { |
---|
814 | level_list[lev]=right_n; |
---|
815 | left.set(right_n, INVALID); |
---|
816 | } |
---|
817 | } else { |
---|
818 | if ( g->valid(left_n) ) { |
---|
819 | right.set(left_n, INVALID); |
---|
820 | } else { |
---|
821 | level_list[lev]=INVALID; |
---|
822 | } |
---|
823 | } |
---|
824 | //unlacing ends |
---|
825 | |
---|
826 | if ( !g->valid(level_list[lev]) ) { |
---|
827 | |
---|
828 | //gapping starts |
---|
829 | for (int i=lev; i!=k ; ) { |
---|
830 | Node v=level_list[++i]; |
---|
831 | while ( g->valid(v) ) { |
---|
832 | level.set(v,n); |
---|
833 | v=right[v]; |
---|
834 | } |
---|
835 | level_list[i]=INVALID; |
---|
836 | if ( !what_heur ) first[i]=INVALID; |
---|
837 | /*{ |
---|
838 | while ( !active[i].empty() ) { |
---|
839 | active[i].pop(); //FIXME: ezt szebben kene |
---|
840 | } |
---|
841 | }*/ |
---|
842 | } |
---|
843 | |
---|
844 | level.set(w,n); |
---|
845 | b=lev-1; |
---|
846 | k=b; |
---|
847 | //gapping ends |
---|
848 | |
---|
849 | } else { |
---|
850 | |
---|
851 | if ( newlevel == n ) level.set(w,n); |
---|
852 | else { |
---|
853 | level.set(w,++newlevel); |
---|
854 | next.set(w,first[newlevel]); |
---|
855 | first[newlevel]=w; |
---|
856 | // active[newlevel].push(w); |
---|
857 | if ( what_heur ) b=newlevel; |
---|
858 | if ( k < newlevel ) ++k; //now k=newlevel |
---|
859 | Node z=level_list[newlevel]; |
---|
860 | if ( g->valid(z) ) left.set(z,w); |
---|
861 | right.set(w,z); |
---|
862 | left.set(w,INVALID); |
---|
863 | level_list[newlevel]=w; |
---|
864 | } |
---|
865 | } |
---|
866 | } //relabel |
---|
867 | }; //class MaxFlow |
---|
868 | } //namespace hugo |
---|
869 | |
---|
870 | #endif //HUGO_MAX_FLOW_H |
---|
871 | |
---|
872 | |
---|
873 | |
---|
874 | |
---|