| 1 | // -*- c++ -*- | 
|---|
| 2 | #ifndef HUGO_MIN_COST_FLOW_H | 
|---|
| 3 | #define HUGO_MIN_COST_FLOW_H | 
|---|
| 4 |  | 
|---|
| 5 | ///\ingroup flowalgs | 
|---|
| 6 | ///\file | 
|---|
| 7 | ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost  | 
|---|
| 8 |  | 
|---|
| 9 |  | 
|---|
| 10 | #include <hugo/dijkstra.h> | 
|---|
| 11 | #include <hugo/graph_wrapper.h> | 
|---|
| 12 | #include <hugo/maps.h> | 
|---|
| 13 | #include <vector> | 
|---|
| 14 |  | 
|---|
| 15 | namespace hugo { | 
|---|
| 16 |  | 
|---|
| 17 | /// \addtogroup flowalgs | 
|---|
| 18 | /// @{ | 
|---|
| 19 |  | 
|---|
| 20 |   ///\brief Implementation of an algorithm for finding a flow of value \c k  | 
|---|
| 21 |   ///(for small values of \c k) having minimal total cost between 2 nodes  | 
|---|
| 22 |   ///  | 
|---|
| 23 |   /// | 
|---|
| 24 |   /// The class \ref hugo::MinCostFlow "MinCostFlow" implements | 
|---|
| 25 |   /// an algorithm for finding a flow of value \c k  | 
|---|
| 26 |   /// having minimal total cost  | 
|---|
| 27 |   /// from a given source node to a given target node in an | 
|---|
| 28 |   /// edge-weighted directed graph. To this end,  | 
|---|
| 29 |   /// the edge-capacities and edge-weitghs have to be nonnegative.  | 
|---|
| 30 |   /// The edge-capacities should be integers, but the edge-weights can be  | 
|---|
| 31 |   /// integers, reals or of other comparable numeric type. | 
|---|
| 32 |   /// This algorithm is intended to use only for small values of \c k,  | 
|---|
| 33 |   /// since it is only polynomial in k,  | 
|---|
| 34 |   /// not in the length of k (which is log k).  | 
|---|
| 35 |   /// In order to find the minimum cost flow of value \c k it  | 
|---|
| 36 |   /// finds the minimum cost flow of value \c i for every  | 
|---|
| 37 |   /// \c i between 0 and \c k.  | 
|---|
| 38 |   /// | 
|---|
| 39 |   ///\param Graph The directed graph type the algorithm runs on. | 
|---|
| 40 |   ///\param LengthMap The type of the length map. | 
|---|
| 41 |   ///\param CapacityMap The capacity map type. | 
|---|
| 42 |   /// | 
|---|
| 43 |   ///\author Attila Bernath | 
|---|
| 44 |   template <typename Graph, typename LengthMap, typename CapacityMap> | 
|---|
| 45 |   class MinCostFlow { | 
|---|
| 46 |  | 
|---|
| 47 |     typedef typename LengthMap::ValueType Length; | 
|---|
| 48 |  | 
|---|
| 49 |     //Warning: this should be integer type | 
|---|
| 50 |     typedef typename CapacityMap::ValueType Capacity; | 
|---|
| 51 |      | 
|---|
| 52 |     typedef typename Graph::Node Node; | 
|---|
| 53 |     typedef typename Graph::NodeIt NodeIt; | 
|---|
| 54 |     typedef typename Graph::Edge Edge; | 
|---|
| 55 |     typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 56 |     typedef typename Graph::template EdgeMap<int> EdgeIntMap; | 
|---|
| 57 |  | 
|---|
| 58 |  | 
|---|
| 59 |     typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType; | 
|---|
| 60 |     typedef typename ResGraphType::Edge ResGraphEdge; | 
|---|
| 61 |  | 
|---|
| 62 |     class ModLengthMap {    | 
|---|
| 63 |       typedef typename Graph::template NodeMap<Length> NodeMap; | 
|---|
| 64 |       const ResGraphType& G; | 
|---|
| 65 |       const LengthMap &ol; | 
|---|
| 66 |       const NodeMap &pot; | 
|---|
| 67 |     public : | 
|---|
| 68 |       typedef typename LengthMap::KeyType KeyType; | 
|---|
| 69 |       typedef typename LengthMap::ValueType ValueType; | 
|---|
| 70 |          | 
|---|
| 71 |       ValueType operator[](typename ResGraphType::Edge e) const {      | 
|---|
| 72 |         if (G.forward(e)) | 
|---|
| 73 |           return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);    | 
|---|
| 74 |         else | 
|---|
| 75 |           return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);    | 
|---|
| 76 |       }      | 
|---|
| 77 |          | 
|---|
| 78 |       ModLengthMap(const ResGraphType& _G, | 
|---|
| 79 |                    const LengthMap &o,  const NodeMap &p) :  | 
|---|
| 80 |         G(_G), /*rev(_rev),*/ ol(o), pot(p){};  | 
|---|
| 81 |     };//ModLengthMap | 
|---|
| 82 |  | 
|---|
| 83 |  | 
|---|
| 84 |   protected: | 
|---|
| 85 |      | 
|---|
| 86 |     //Input | 
|---|
| 87 |     const Graph& G; | 
|---|
| 88 |     const LengthMap& length; | 
|---|
| 89 |     const CapacityMap& capacity; | 
|---|
| 90 |  | 
|---|
| 91 |  | 
|---|
| 92 |     //auxiliary variables | 
|---|
| 93 |  | 
|---|
| 94 |     //To store the flow | 
|---|
| 95 |     EdgeIntMap flow;  | 
|---|
| 96 |     //To store the potential (dual variables) | 
|---|
| 97 |     typedef typename Graph::template NodeMap<Length> PotentialMap; | 
|---|
| 98 |     PotentialMap potential; | 
|---|
| 99 |      | 
|---|
| 100 |  | 
|---|
| 101 |     Length total_length; | 
|---|
| 102 |  | 
|---|
| 103 |  | 
|---|
| 104 |   public : | 
|---|
| 105 |  | 
|---|
| 106 |     /// The constructor of the class. | 
|---|
| 107 |      | 
|---|
| 108 |     ///\param _G The directed graph the algorithm runs on.  | 
|---|
| 109 |     ///\param _length The length (weight or cost) of the edges.  | 
|---|
| 110 |     ///\param _cap The capacity of the edges.  | 
|---|
| 111 |     MinCostFlow(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G),  | 
|---|
| 112 |       length(_length), capacity(_cap), flow(_G), potential(_G){ } | 
|---|
| 113 |  | 
|---|
| 114 |      | 
|---|
| 115 |     ///Runs the algorithm. | 
|---|
| 116 |      | 
|---|
| 117 |     ///Runs the algorithm. | 
|---|
| 118 |     ///Returns k if there is a flow of value at least k edge-disjoint  | 
|---|
| 119 |     ///from s to t. | 
|---|
| 120 |     ///Otherwise it returns the maximum value of a flow from s to t. | 
|---|
| 121 |     /// | 
|---|
| 122 |     ///\param s The source node. | 
|---|
| 123 |     ///\param t The target node. | 
|---|
| 124 |     ///\param k The value of the flow we are looking for. | 
|---|
| 125 |     /// | 
|---|
| 126 |     ///\todo May be it does make sense to be able to start with a nonzero  | 
|---|
| 127 |     /// feasible primal-dual solution pair as well. | 
|---|
| 128 |     int run(Node s, Node t, int k) { | 
|---|
| 129 |  | 
|---|
| 130 |       //Resetting variables from previous runs | 
|---|
| 131 |       total_length = 0; | 
|---|
| 132 |        | 
|---|
| 133 |       for (typename Graph::EdgeIt e(G); e!=INVALID; ++e) flow.set(e, 0); | 
|---|
| 134 |  | 
|---|
| 135 |       //Initialize the potential to zero | 
|---|
| 136 |       for (typename Graph::NodeIt n(G); n!=INVALID; ++n) potential.set(n, 0); | 
|---|
| 137 |        | 
|---|
| 138 |        | 
|---|
| 139 |       //We need a residual graph | 
|---|
| 140 |       ResGraphType res_graph(G, capacity, flow); | 
|---|
| 141 |  | 
|---|
| 142 |  | 
|---|
| 143 |       ModLengthMap mod_length(res_graph, length, potential); | 
|---|
| 144 |  | 
|---|
| 145 |       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length); | 
|---|
| 146 |  | 
|---|
| 147 |       int i; | 
|---|
| 148 |       for (i=0; i<k; ++i){ | 
|---|
| 149 |         dijkstra.run(s); | 
|---|
| 150 |         if (!dijkstra.reached(t)){ | 
|---|
| 151 |           //There are no flow of value k from s to t | 
|---|
| 152 |           break; | 
|---|
| 153 |         }; | 
|---|
| 154 |          | 
|---|
| 155 |         //We have to change the potential | 
|---|
| 156 |         for(typename ResGraphType::NodeIt n(res_graph); n!=INVALID; ++n) | 
|---|
| 157 |           potential[n] += dijkstra.distMap()[n]; | 
|---|
| 158 |  | 
|---|
| 159 |  | 
|---|
| 160 |         //Augmenting on the sortest path | 
|---|
| 161 |         Node n=t; | 
|---|
| 162 |         ResGraphEdge e; | 
|---|
| 163 |         while (n!=s){ | 
|---|
| 164 |           e = dijkstra.pred(n); | 
|---|
| 165 |           n = dijkstra.predNode(n); | 
|---|
| 166 |           res_graph.augment(e,1); | 
|---|
| 167 |           //Let's update the total length | 
|---|
| 168 |           if (res_graph.forward(e)) | 
|---|
| 169 |             total_length += length[e]; | 
|---|
| 170 |           else  | 
|---|
| 171 |             total_length -= length[e];       | 
|---|
| 172 |         } | 
|---|
| 173 |  | 
|---|
| 174 |            | 
|---|
| 175 |       } | 
|---|
| 176 |        | 
|---|
| 177 |  | 
|---|
| 178 |       return i; | 
|---|
| 179 |     } | 
|---|
| 180 |  | 
|---|
| 181 |  | 
|---|
| 182 |  | 
|---|
| 183 |     /// Gives back the total weight of the found flow. | 
|---|
| 184 |  | 
|---|
| 185 |     ///This function gives back the total weight of the found flow. | 
|---|
| 186 |     ///Assumes that \c run() has been run and nothing changed since then. | 
|---|
| 187 |     Length totalLength(){ | 
|---|
| 188 |       return total_length; | 
|---|
| 189 |     } | 
|---|
| 190 |  | 
|---|
| 191 |     ///Returns a const reference to the EdgeMap \c flow.  | 
|---|
| 192 |  | 
|---|
| 193 |     ///Returns a const reference to the EdgeMap \c flow.  | 
|---|
| 194 |     ///\pre \ref run() must | 
|---|
| 195 |     ///be called before using this function. | 
|---|
| 196 |     const EdgeIntMap &getFlow() const { return flow;} | 
|---|
| 197 |  | 
|---|
| 198 |     ///Returns a const reference to the NodeMap \c potential (the dual solution). | 
|---|
| 199 |  | 
|---|
| 200 |     ///Returns a const reference to the NodeMap \c potential (the dual solution). | 
|---|
| 201 |     /// \pre \ref run() must be called before using this function. | 
|---|
| 202 |     const PotentialMap &getPotential() const { return potential;} | 
|---|
| 203 |  | 
|---|
| 204 |     /// Checking the complementary slackness optimality criteria | 
|---|
| 205 |  | 
|---|
| 206 |     ///This function checks, whether the given solution is optimal | 
|---|
| 207 |     ///If executed after the call of \c run() then it should return with true. | 
|---|
| 208 |     ///This function only checks optimality, doesn't bother with feasibility. | 
|---|
| 209 |     ///It is meant for testing purposes. | 
|---|
| 210 |     /// | 
|---|
| 211 |     bool checkComplementarySlackness(){ | 
|---|
| 212 |       Length mod_pot; | 
|---|
| 213 |       Length fl_e; | 
|---|
| 214 |         for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) { | 
|---|
| 215 |         //C^{\Pi}_{i,j} | 
|---|
| 216 |         mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)]; | 
|---|
| 217 |         fl_e = flow[e]; | 
|---|
| 218 |         if (0<fl_e && fl_e<capacity[e]) { | 
|---|
| 219 |           /// \todo better comparison is needed for real types, moreover,  | 
|---|
| 220 |           /// this comparison here is superfluous. | 
|---|
| 221 |           if (mod_pot != 0) | 
|---|
| 222 |             return false; | 
|---|
| 223 |         }  | 
|---|
| 224 |         else { | 
|---|
| 225 |           if (mod_pot > 0 && fl_e != 0) | 
|---|
| 226 |             return false; | 
|---|
| 227 |           if (mod_pot < 0 && fl_e != capacity[e]) | 
|---|
| 228 |             return false; | 
|---|
| 229 |         } | 
|---|
| 230 |       } | 
|---|
| 231 |       return true; | 
|---|
| 232 |     } | 
|---|
| 233 |      | 
|---|
| 234 |  | 
|---|
| 235 |   }; //class MinCostFlow | 
|---|
| 236 |  | 
|---|
| 237 |   ///@} | 
|---|
| 238 |  | 
|---|
| 239 | } //namespace hugo | 
|---|
| 240 |  | 
|---|
| 241 | #endif //HUGO_MIN_COST_FLOW_H | 
|---|