| 1 | // -*- c++ -*- | 
|---|
| 2 | #ifndef HUGO_MINCOSTFLOWS_H | 
|---|
| 3 | #define HUGO_MINCOSTFLOWS_H | 
|---|
| 4 |  | 
|---|
| 5 | ///\ingroup flowalgs | 
|---|
| 6 | ///\file | 
|---|
| 7 | ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost | 
|---|
| 8 |  | 
|---|
| 9 |  | 
|---|
| 10 | #include <hugo/dijkstra.h> | 
|---|
| 11 | #include <hugo/graph_wrapper.h> | 
|---|
| 12 | #include <hugo/maps.h> | 
|---|
| 13 | #include <vector> | 
|---|
| 14 |  | 
|---|
| 15 | namespace hugo { | 
|---|
| 16 |  | 
|---|
| 17 | /// \addtogroup flowalgs | 
|---|
| 18 | /// @{ | 
|---|
| 19 |  | 
|---|
| 20 | ///\brief Implementation of an algorithm for finding a flow of value \c k | 
|---|
| 21 | ///(for small values of \c k) having minimal total cost between 2 nodes | 
|---|
| 22 | /// | 
|---|
| 23 | /// | 
|---|
| 24 | /// The class \ref hugo::MinCostFlows "MinCostFlows" implements | 
|---|
| 25 | /// an algorithm for finding a flow of value \c k | 
|---|
| 26 | ///(for small values of \c k) having minimal total cost | 
|---|
| 27 | /// from a given source node to a given target node in an | 
|---|
| 28 | /// edge-weighted directed graph having nonnegative integer capacities. | 
|---|
| 29 | /// The range of the length (weight) function is nonnegative reals but | 
|---|
| 30 | /// the range of capacity function is the set of nonnegative integers. | 
|---|
| 31 | /// It is not a polinomial time algorithm for counting the minimum cost | 
|---|
| 32 | /// maximal flow, since it counts the minimum cost flow for every value 0..M | 
|---|
| 33 | /// where \c M is the value of the maximal flow. | 
|---|
| 34 | /// | 
|---|
| 35 | ///\author Attila Bernath | 
|---|
| 36 | template <typename Graph, typename LengthMap, typename CapacityMap> | 
|---|
| 37 | class MinCostFlows { | 
|---|
| 38 |  | 
|---|
| 39 | typedef typename LengthMap::ValueType Length; | 
|---|
| 40 |  | 
|---|
| 41 | //Warning: this should be integer type | 
|---|
| 42 | typedef typename CapacityMap::ValueType Capacity; | 
|---|
| 43 |  | 
|---|
| 44 | typedef typename Graph::Node Node; | 
|---|
| 45 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 46 | typedef typename Graph::Edge Edge; | 
|---|
| 47 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 48 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; | 
|---|
| 49 |  | 
|---|
| 50 | //    typedef ConstMap<Edge,int> ConstMap; | 
|---|
| 51 |  | 
|---|
| 52 | typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType; | 
|---|
| 53 | typedef typename ResGraphType::Edge ResGraphEdge; | 
|---|
| 54 |  | 
|---|
| 55 | class ModLengthMap { | 
|---|
| 56 | //typedef typename ResGraphType::template NodeMap<Length> NodeMap; | 
|---|
| 57 | typedef typename Graph::template NodeMap<Length> NodeMap; | 
|---|
| 58 | const ResGraphType& G; | 
|---|
| 59 | //      const EdgeIntMap& rev; | 
|---|
| 60 | const LengthMap &ol; | 
|---|
| 61 | const NodeMap &pot; | 
|---|
| 62 | public : | 
|---|
| 63 | typedef typename LengthMap::KeyType KeyType; | 
|---|
| 64 | typedef typename LengthMap::ValueType ValueType; | 
|---|
| 65 |  | 
|---|
| 66 | ValueType operator[](typename ResGraphType::Edge e) const { | 
|---|
| 67 | if (G.forward(e)) | 
|---|
| 68 | return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); | 
|---|
| 69 | else | 
|---|
| 70 | return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); | 
|---|
| 71 | } | 
|---|
| 72 |  | 
|---|
| 73 | ModLengthMap(const ResGraphType& _G, | 
|---|
| 74 | const LengthMap &o,  const NodeMap &p) : | 
|---|
| 75 | G(_G), /*rev(_rev),*/ ol(o), pot(p){}; | 
|---|
| 76 | };//ModLengthMap | 
|---|
| 77 |  | 
|---|
| 78 |  | 
|---|
| 79 | protected: | 
|---|
| 80 |  | 
|---|
| 81 | //Input | 
|---|
| 82 | const Graph& G; | 
|---|
| 83 | const LengthMap& length; | 
|---|
| 84 | const CapacityMap& capacity; | 
|---|
| 85 |  | 
|---|
| 86 |  | 
|---|
| 87 | //auxiliary variables | 
|---|
| 88 |  | 
|---|
| 89 | //To store the flow | 
|---|
| 90 | EdgeIntMap flow; | 
|---|
| 91 | //To store the potential (dual variables) | 
|---|
| 92 | typedef typename Graph::template NodeMap<Length> PotentialMap; | 
|---|
| 93 | PotentialMap potential; | 
|---|
| 94 |  | 
|---|
| 95 |  | 
|---|
| 96 | Length total_length; | 
|---|
| 97 |  | 
|---|
| 98 |  | 
|---|
| 99 | public : | 
|---|
| 100 |  | 
|---|
| 101 |  | 
|---|
| 102 | MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), | 
|---|
| 103 | length(_length), capacity(_cap), flow(_G), potential(_G){ } | 
|---|
| 104 |  | 
|---|
| 105 |  | 
|---|
| 106 | ///Runs the algorithm. | 
|---|
| 107 |  | 
|---|
| 108 | ///Runs the algorithm. | 
|---|
| 109 | ///Returns k if there are at least k edge-disjoint paths from s to t. | 
|---|
| 110 | ///Otherwise it returns the number of found edge-disjoint paths from s to t. | 
|---|
| 111 | ///\todo May be it does make sense to be able to start with a nonzero | 
|---|
| 112 | /// feasible primal-dual solution pair as well. | 
|---|
| 113 | int run(Node s, Node t, int k) { | 
|---|
| 114 |  | 
|---|
| 115 | //Resetting variables from previous runs | 
|---|
| 116 | total_length = 0; | 
|---|
| 117 |  | 
|---|
| 118 | for (typename Graph::EdgeIt e(G); e!=INVALID; ++e) flow.set(e, 0); | 
|---|
| 119 |  | 
|---|
| 120 | //Initialize the potential to zero | 
|---|
| 121 | for (typename Graph::NodeIt n(G); n!=INVALID; ++n) potential.set(n, 0); | 
|---|
| 122 |  | 
|---|
| 123 |  | 
|---|
| 124 | //We need a residual graph | 
|---|
| 125 | ResGraphType res_graph(G, capacity, flow); | 
|---|
| 126 |  | 
|---|
| 127 |  | 
|---|
| 128 | ModLengthMap mod_length(res_graph, length, potential); | 
|---|
| 129 |  | 
|---|
| 130 | Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length); | 
|---|
| 131 |  | 
|---|
| 132 | int i; | 
|---|
| 133 | for (i=0; i<k; ++i){ | 
|---|
| 134 | dijkstra.run(s); | 
|---|
| 135 | if (!dijkstra.reached(t)){ | 
|---|
| 136 | //There are no k paths from s to t | 
|---|
| 137 | break; | 
|---|
| 138 | }; | 
|---|
| 139 |  | 
|---|
| 140 | //We have to change the potential | 
|---|
| 141 | for(typename ResGraphType::NodeIt n(res_graph); n!=INVALID; ++n) | 
|---|
| 142 | potential[n] += dijkstra.distMap()[n]; | 
|---|
| 143 |  | 
|---|
| 144 |  | 
|---|
| 145 | //Augmenting on the sortest path | 
|---|
| 146 | Node n=t; | 
|---|
| 147 | ResGraphEdge e; | 
|---|
| 148 | while (n!=s){ | 
|---|
| 149 | e = dijkstra.pred(n); | 
|---|
| 150 | n = dijkstra.predNode(n); | 
|---|
| 151 | res_graph.augment(e,1); | 
|---|
| 152 | //Let's update the total length | 
|---|
| 153 | if (res_graph.forward(e)) | 
|---|
| 154 | total_length += length[e]; | 
|---|
| 155 | else | 
|---|
| 156 | total_length -= length[e]; | 
|---|
| 157 | } | 
|---|
| 158 |  | 
|---|
| 159 |  | 
|---|
| 160 | } | 
|---|
| 161 |  | 
|---|
| 162 |  | 
|---|
| 163 | return i; | 
|---|
| 164 | } | 
|---|
| 165 |  | 
|---|
| 166 |  | 
|---|
| 167 |  | 
|---|
| 168 |  | 
|---|
| 169 | ///This function gives back the total length of the found paths. | 
|---|
| 170 | ///Assumes that \c run() has been run and nothing changed since then. | 
|---|
| 171 | Length totalLength(){ | 
|---|
| 172 | return total_length; | 
|---|
| 173 | } | 
|---|
| 174 |  | 
|---|
| 175 | ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must | 
|---|
| 176 | ///be called before using this function. | 
|---|
| 177 | const EdgeIntMap &getFlow() const { return flow;} | 
|---|
| 178 |  | 
|---|
| 179 | ///Returns a const reference to the NodeMap \c potential (the dual solution). | 
|---|
| 180 | /// \pre \ref run() must be called before using this function. | 
|---|
| 181 | const PotentialMap &getPotential() const { return potential;} | 
|---|
| 182 |  | 
|---|
| 183 | ///This function checks, whether the given solution is optimal | 
|---|
| 184 | ///Running after a \c run() should return with true | 
|---|
| 185 | ///In this "state of the art" this only check optimality, doesn't bother with feasibility | 
|---|
| 186 | /// | 
|---|
| 187 | ///\todo Is this OK here? | 
|---|
| 188 | bool checkComplementarySlackness(){ | 
|---|
| 189 | Length mod_pot; | 
|---|
| 190 | Length fl_e; | 
|---|
| 191 | for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) { | 
|---|
| 192 | //C^{\Pi}_{i,j} | 
|---|
| 193 | mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)]; | 
|---|
| 194 | fl_e = flow[e]; | 
|---|
| 195 | //      std::cout << fl_e << std::endl; | 
|---|
| 196 | if (0<fl_e && fl_e<capacity[e]){ | 
|---|
| 197 | if (mod_pot != 0) | 
|---|
| 198 | return false; | 
|---|
| 199 | } | 
|---|
| 200 | else{ | 
|---|
| 201 | if (mod_pot > 0 && fl_e != 0) | 
|---|
| 202 | return false; | 
|---|
| 203 | if (mod_pot < 0 && fl_e != capacity[e]) | 
|---|
| 204 | return false; | 
|---|
| 205 | } | 
|---|
| 206 | } | 
|---|
| 207 | return true; | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 |  | 
|---|
| 211 | }; //class MinCostFlows | 
|---|
| 212 |  | 
|---|
| 213 | ///@} | 
|---|
| 214 |  | 
|---|
| 215 | } //namespace hugo | 
|---|
| 216 |  | 
|---|
| 217 | #endif //HUGO_MINCOSTFLOWS_H | 
|---|