| 1 | // -*- c++ -*- | 
|---|
| 2 | #ifndef HUGO_MINLENGTHPATHS_H | 
|---|
| 3 | #define HUGO_MINLENGTHPATHS_H | 
|---|
| 4 |  | 
|---|
| 5 | ///\ingroup flowalgs | 
|---|
| 6 | ///\file | 
|---|
| 7 | ///\brief An algorithm for finding k paths of minimal total length. | 
|---|
| 8 |  | 
|---|
| 9 |  | 
|---|
| 10 | //#include <hugo/dijkstra.h> | 
|---|
| 11 | //#include <hugo/graph_wrapper.h> | 
|---|
| 12 | #include <hugo/maps.h> | 
|---|
| 13 | #include <vector> | 
|---|
| 14 | #include <hugo/mincostflows.h> | 
|---|
| 15 |  | 
|---|
| 16 | namespace hugo { | 
|---|
| 17 |  | 
|---|
| 18 | /// \addtogroup flowalgs | 
|---|
| 19 | /// @{ | 
|---|
| 20 |  | 
|---|
| 21 | ///\brief Implementation of an algorithm for finding k paths between 2 nodes | 
|---|
| 22 | /// of minimal total length | 
|---|
| 23 | /// | 
|---|
| 24 | /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements | 
|---|
| 25 | /// an algorithm for finding k edge-disjoint paths | 
|---|
| 26 | /// from a given source node to a given target node in an | 
|---|
| 27 | /// edge-weighted directed graph having minimal total weigth (length). | 
|---|
| 28 | /// | 
|---|
| 29 | ///\warning It is assumed that the lengths are positive, since the | 
|---|
| 30 | /// general flow-decomposition is not implemented yet. | 
|---|
| 31 | /// | 
|---|
| 32 | ///\author Attila Bernath | 
|---|
| 33 | template <typename Graph, typename LengthMap> | 
|---|
| 34 | class MinLengthPaths{ | 
|---|
| 35 |  | 
|---|
| 36 |  | 
|---|
| 37 | typedef typename LengthMap::ValueType Length; | 
|---|
| 38 |  | 
|---|
| 39 | typedef typename Graph::Node Node; | 
|---|
| 40 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 41 | typedef typename Graph::Edge Edge; | 
|---|
| 42 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 43 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; | 
|---|
| 44 |  | 
|---|
| 45 | typedef ConstMap<Edge,int> ConstMap; | 
|---|
| 46 |  | 
|---|
| 47 | //Input | 
|---|
| 48 | const Graph& G; | 
|---|
| 49 |  | 
|---|
| 50 | //Auxiliary variables | 
|---|
| 51 | //This is the capacity map for the mincostflow problem | 
|---|
| 52 | ConstMap const1map; | 
|---|
| 53 | //This MinCostFlows instance will actually solve the problem | 
|---|
| 54 | MinCostFlows<Graph, LengthMap, ConstMap> mincost_flow; | 
|---|
| 55 |  | 
|---|
| 56 | //Container to store found paths | 
|---|
| 57 | std::vector< std::vector<Edge> > paths; | 
|---|
| 58 |  | 
|---|
| 59 | public : | 
|---|
| 60 |  | 
|---|
| 61 |  | 
|---|
| 62 | MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G), | 
|---|
| 63 | const1map(1), mincost_flow(_G, _length, const1map){} | 
|---|
| 64 |  | 
|---|
| 65 | ///Runs the algorithm. | 
|---|
| 66 |  | 
|---|
| 67 | ///Runs the algorithm. | 
|---|
| 68 | ///Returns k if there are at least k edge-disjoint paths from s to t. | 
|---|
| 69 | ///Otherwise it returns the number of found edge-disjoint paths from s to t. | 
|---|
| 70 | int run(Node s, Node t, int k) { | 
|---|
| 71 |  | 
|---|
| 72 | int i = mincost_flow.run(s,t,k); | 
|---|
| 73 |  | 
|---|
| 74 |  | 
|---|
| 75 |  | 
|---|
| 76 | //Let's find the paths | 
|---|
| 77 | //We put the paths into stl vectors (as an inner representation). | 
|---|
| 78 | //In the meantime we lose the information stored in 'reversed'. | 
|---|
| 79 | //We suppose the lengths to be positive now. | 
|---|
| 80 |  | 
|---|
| 81 | //We don't want to change the flow of mincost_flow, so we make a copy | 
|---|
| 82 | //The name here suggests that the flow has only 0/1 values. | 
|---|
| 83 | EdgeIntMap reversed(G); | 
|---|
| 84 |  | 
|---|
| 85 | for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) | 
|---|
| 86 | reversed[e] = mincost_flow.getFlow()[e]; | 
|---|
| 87 |  | 
|---|
| 88 | paths.clear(); | 
|---|
| 89 | //total_length=0; | 
|---|
| 90 | paths.resize(k); | 
|---|
| 91 | for (int j=0; j<i; ++j){ | 
|---|
| 92 | Node n=s; | 
|---|
| 93 | OutEdgeIt e; | 
|---|
| 94 |  | 
|---|
| 95 | while (n!=t){ | 
|---|
| 96 |  | 
|---|
| 97 |  | 
|---|
| 98 | G.first(e,n); | 
|---|
| 99 |  | 
|---|
| 100 | while (!reversed[e]){ | 
|---|
| 101 | ++e; | 
|---|
| 102 | } | 
|---|
| 103 | n = G.head(e); | 
|---|
| 104 | paths[j].push_back(e); | 
|---|
| 105 | //total_length += length[e]; | 
|---|
| 106 | reversed[e] = 1-reversed[e]; | 
|---|
| 107 | } | 
|---|
| 108 |  | 
|---|
| 109 | } | 
|---|
| 110 | return i; | 
|---|
| 111 | } | 
|---|
| 112 |  | 
|---|
| 113 |  | 
|---|
| 114 | ///This function gives back the total length of the found paths. | 
|---|
| 115 | ///Assumes that \c run() has been run and nothing changed since then. | 
|---|
| 116 | Length totalLength(){ | 
|---|
| 117 | return mincost_flow.totalLength(); | 
|---|
| 118 | } | 
|---|
| 119 |  | 
|---|
| 120 | ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must | 
|---|
| 121 | ///be called before using this function. | 
|---|
| 122 | const EdgeIntMap &getFlow() const { return mincost_flow.flow;} | 
|---|
| 123 |  | 
|---|
| 124 | ///Returns a const reference to the NodeMap \c potential (the dual solution). | 
|---|
| 125 | /// \pre \ref run() must be called before using this function. | 
|---|
| 126 | const EdgeIntMap &getPotential() const { return mincost_flow.potential;} | 
|---|
| 127 |  | 
|---|
| 128 | ///This function checks, whether the given solution is optimal | 
|---|
| 129 | ///Running after a \c run() should return with true | 
|---|
| 130 | ///In this "state of the art" this only checks optimality, doesn't bother with feasibility | 
|---|
| 131 | /// | 
|---|
| 132 | ///\todo Is this OK here? | 
|---|
| 133 | bool checkComplementarySlackness(){ | 
|---|
| 134 | return mincost_flow.checkComplementarySlackness(); | 
|---|
| 135 | } | 
|---|
| 136 |  | 
|---|
| 137 | ///This function gives back the \c j-th path in argument p. | 
|---|
| 138 | ///Assumes that \c run() has been run and nothing changed since then. | 
|---|
| 139 | /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is not less than the result of previous \c run, then the result here will be an empty path (\c j can be 0 as well). | 
|---|
| 140 | template<typename DirPath> | 
|---|
| 141 | void getPath(DirPath& p, size_t j){ | 
|---|
| 142 |  | 
|---|
| 143 | p.clear(); | 
|---|
| 144 | if (j>paths.size()-1){ | 
|---|
| 145 | return; | 
|---|
| 146 | } | 
|---|
| 147 | typename DirPath::Builder B(p); | 
|---|
| 148 | for(typename std::vector<Edge>::iterator i=paths[j].begin(); | 
|---|
| 149 | i!=paths[j].end(); ++i ){ | 
|---|
| 150 | B.pushBack(*i); | 
|---|
| 151 | } | 
|---|
| 152 |  | 
|---|
| 153 | B.commit(); | 
|---|
| 154 | } | 
|---|
| 155 |  | 
|---|
| 156 | }; //class MinLengthPaths | 
|---|
| 157 |  | 
|---|
| 158 | ///@} | 
|---|
| 159 |  | 
|---|
| 160 | } //namespace hugo | 
|---|
| 161 |  | 
|---|
| 162 | #endif //HUGO_MINLENGTHPATHS_H | 
|---|