| 1 | // -*- c++ -*- | 
|---|
| 2 | #ifndef HUGO_MINLENGTHPATHS_H | 
|---|
| 3 | #define HUGO_MINLENGTHPATHS_H | 
|---|
| 4 |  | 
|---|
| 5 | ///\ingroup galgs | 
|---|
| 6 | ///\file | 
|---|
| 7 | ///\brief An algorithm for finding k paths of minimal total length. | 
|---|
| 8 |  | 
|---|
| 9 |  | 
|---|
| 10 | //#include <hugo/dijkstra.h> | 
|---|
| 11 | //#include <hugo/graph_wrapper.h> | 
|---|
| 12 | #include <hugo/maps.h> | 
|---|
| 13 | #include <vector> | 
|---|
| 14 | #include <hugo/mincostflows.h> | 
|---|
| 15 | #include <for_each_macros.h> | 
|---|
| 16 |  | 
|---|
| 17 | namespace hugo { | 
|---|
| 18 |  | 
|---|
| 19 | /// \addtogroup galgs | 
|---|
| 20 | /// @{ | 
|---|
| 21 |  | 
|---|
| 22 | ///\brief Implementation of an algorithm for finding k paths between 2 nodes | 
|---|
| 23 | /// of minimal total length | 
|---|
| 24 | /// | 
|---|
| 25 | /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements | 
|---|
| 26 | /// an algorithm for finding k edge-disjoint paths | 
|---|
| 27 | /// from a given source node to a given target node in an | 
|---|
| 28 | /// edge-weighted directed graph having minimal total weigth (length). | 
|---|
| 29 | /// | 
|---|
| 30 | ///\warning It is assumed that the lengths are positive, since the | 
|---|
| 31 | /// general flow-decomposition is not implemented yet. | 
|---|
| 32 | /// | 
|---|
| 33 | ///\author Attila Bernath | 
|---|
| 34 | template <typename Graph, typename LengthMap> | 
|---|
| 35 | class MinLengthPaths{ | 
|---|
| 36 |  | 
|---|
| 37 |  | 
|---|
| 38 | typedef typename LengthMap::ValueType Length; | 
|---|
| 39 |  | 
|---|
| 40 | typedef typename Graph::Node Node; | 
|---|
| 41 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 42 | typedef typename Graph::Edge Edge; | 
|---|
| 43 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 44 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; | 
|---|
| 45 |  | 
|---|
| 46 | typedef ConstMap<Edge,int> ConstMap; | 
|---|
| 47 |  | 
|---|
| 48 | //Input | 
|---|
| 49 | const Graph& G; | 
|---|
| 50 |  | 
|---|
| 51 | //Auxiliary variables | 
|---|
| 52 | //This is the capacity map for the mincostflow problem | 
|---|
| 53 | ConstMap const1map; | 
|---|
| 54 | //This MinCostFlows instance will actually solve the problem | 
|---|
| 55 | MinCostFlows<Graph, LengthMap, ConstMap> mincost_flow; | 
|---|
| 56 |  | 
|---|
| 57 | //Container to store found paths | 
|---|
| 58 | std::vector< std::vector<Edge> > paths; | 
|---|
| 59 |  | 
|---|
| 60 | public : | 
|---|
| 61 |  | 
|---|
| 62 |  | 
|---|
| 63 | MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G), | 
|---|
| 64 | const1map(1), mincost_flow(_G, _length, const1map){} | 
|---|
| 65 |  | 
|---|
| 66 | ///Runs the algorithm. | 
|---|
| 67 |  | 
|---|
| 68 | ///Runs the algorithm. | 
|---|
| 69 | ///Returns k if there are at least k edge-disjoint paths from s to t. | 
|---|
| 70 | ///Otherwise it returns the number of found edge-disjoint paths from s to t. | 
|---|
| 71 | int run(Node s, Node t, int k) { | 
|---|
| 72 |  | 
|---|
| 73 | int i = mincost_flow.run(s,t,k); | 
|---|
| 74 |  | 
|---|
| 75 |  | 
|---|
| 76 |  | 
|---|
| 77 | //Let's find the paths | 
|---|
| 78 | //We put the paths into stl vectors (as an inner representation). | 
|---|
| 79 | //In the meantime we lose the information stored in 'reversed'. | 
|---|
| 80 | //We suppose the lengths to be positive now. | 
|---|
| 81 |  | 
|---|
| 82 | //We don't want to change the flow of mincost_flow, so we make a copy | 
|---|
| 83 | //The name here suggests that the flow has only 0/1 values. | 
|---|
| 84 | EdgeIntMap reversed(G); | 
|---|
| 85 |  | 
|---|
| 86 | FOR_EACH_LOC(typename Graph::EdgeIt, e, G){ | 
|---|
| 87 | reversed[e] = mincost_flow.getFlow()[e]; | 
|---|
| 88 | } | 
|---|
| 89 |  | 
|---|
| 90 | paths.clear(); | 
|---|
| 91 | //total_length=0; | 
|---|
| 92 | paths.resize(k); | 
|---|
| 93 | for (int j=0; j<i; ++j){ | 
|---|
| 94 | Node n=s; | 
|---|
| 95 | OutEdgeIt e; | 
|---|
| 96 |  | 
|---|
| 97 | while (n!=t){ | 
|---|
| 98 |  | 
|---|
| 99 |  | 
|---|
| 100 | G.first(e,n); | 
|---|
| 101 |  | 
|---|
| 102 | while (!reversed[e]){ | 
|---|
| 103 | G.next(e); | 
|---|
| 104 | } | 
|---|
| 105 | n = G.head(e); | 
|---|
| 106 | paths[j].push_back(e); | 
|---|
| 107 | //total_length += length[e]; | 
|---|
| 108 | reversed[e] = 1-reversed[e]; | 
|---|
| 109 | } | 
|---|
| 110 |  | 
|---|
| 111 | } | 
|---|
| 112 | return i; | 
|---|
| 113 | } | 
|---|
| 114 |  | 
|---|
| 115 |  | 
|---|
| 116 | ///This function gives back the total length of the found paths. | 
|---|
| 117 | ///Assumes that \c run() has been run and nothing changed since then. | 
|---|
| 118 | Length totalLength(){ | 
|---|
| 119 | return mincost_flow.totalLength(); | 
|---|
| 120 | } | 
|---|
| 121 |  | 
|---|
| 122 | ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must | 
|---|
| 123 | ///be called before using this function. | 
|---|
| 124 | const EdgeIntMap &getFlow() const { return mincost_flow.flow;} | 
|---|
| 125 |  | 
|---|
| 126 | ///Returns a const reference to the NodeMap \c potential (the dual solution). | 
|---|
| 127 | /// \pre \ref run() must be called before using this function. | 
|---|
| 128 | const EdgeIntMap &getPotential() const { return mincost_flow.potential;} | 
|---|
| 129 |  | 
|---|
| 130 | ///This function checks, whether the given solution is optimal | 
|---|
| 131 | ///Running after a \c run() should return with true | 
|---|
| 132 | ///In this "state of the art" this only checks optimality, doesn't bother with feasibility | 
|---|
| 133 | /// | 
|---|
| 134 | ///\todo Is this OK here? | 
|---|
| 135 | bool checkComplementarySlackness(){ | 
|---|
| 136 | return mincost_flow.checkComplementarySlackness(); | 
|---|
| 137 | } | 
|---|
| 138 |  | 
|---|
| 139 | ///This function gives back the \c j-th path in argument p. | 
|---|
| 140 | ///Assumes that \c run() has been run and nothing changed since then. | 
|---|
| 141 | /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is not less than the result of previous \c run, then the result here will be an empty path (\c j can be 0 as well). | 
|---|
| 142 | template<typename DirPath> | 
|---|
| 143 | void getPath(DirPath& p, size_t j){ | 
|---|
| 144 |  | 
|---|
| 145 | p.clear(); | 
|---|
| 146 | if (j>paths.size()-1){ | 
|---|
| 147 | return; | 
|---|
| 148 | } | 
|---|
| 149 | typename DirPath::Builder B(p); | 
|---|
| 150 | for(typename std::vector<Edge>::iterator i=paths[j].begin(); | 
|---|
| 151 | i!=paths[j].end(); ++i ){ | 
|---|
| 152 | B.pushBack(*i); | 
|---|
| 153 | } | 
|---|
| 154 |  | 
|---|
| 155 | B.commit(); | 
|---|
| 156 | } | 
|---|
| 157 |  | 
|---|
| 158 | }; //class MinLengthPaths | 
|---|
| 159 |  | 
|---|
| 160 | ///@} | 
|---|
| 161 |  | 
|---|
| 162 | } //namespace hugo | 
|---|
| 163 |  | 
|---|
| 164 | #endif //HUGO_MINLENGTHPATHS_H | 
|---|