| [836] | 1 | // -*- C++ -*- | 
|---|
|  | 2 | #ifndef HUGO_PREFLOW_H | 
|---|
|  | 3 | #define HUGO_PREFLOW_H | 
|---|
|  | 4 |  | 
|---|
|  | 5 | #include <vector> | 
|---|
|  | 6 | #include <queue> | 
|---|
|  | 7 |  | 
|---|
|  | 8 | #include <hugo/invalid.h> | 
|---|
|  | 9 | #include <hugo/maps.h> | 
|---|
|  | 10 |  | 
|---|
|  | 11 | /// \file | 
|---|
|  | 12 | /// \ingroup flowalgs | 
|---|
|  | 13 |  | 
|---|
|  | 14 | namespace hugo { | 
|---|
|  | 15 |  | 
|---|
|  | 16 | /// \addtogroup flowalgs | 
|---|
|  | 17 | /// @{ | 
|---|
|  | 18 |  | 
|---|
| [851] | 19 | ///%Preflow algorithms class. | 
|---|
| [836] | 20 |  | 
|---|
|  | 21 | ///This class provides an implementation of the \e preflow \e | 
|---|
|  | 22 | ///algorithm producing a flow of maximum value in a directed | 
|---|
|  | 23 | ///graph. The preflow algorithms are the fastest max flow algorithms | 
|---|
| [851] | 24 | ///up to now. The \e source node, the \e target node, the \e | 
|---|
| [836] | 25 | ///capacity of the edges and the \e starting \e flow value of the | 
|---|
|  | 26 | ///edges should be passed to the algorithm through the | 
|---|
|  | 27 | ///constructor. It is possible to change these quantities using the | 
|---|
|  | 28 | ///functions \ref setSource, \ref setTarget, \ref setCap and \ref | 
|---|
|  | 29 | ///setFlow. | 
|---|
|  | 30 | /// | 
|---|
| [851] | 31 | ///After running \ref phase1() or \ref preflow(), the actual flow | 
|---|
| [836] | 32 | ///value can be obtained by calling \ref flowValue(). The minimum | 
|---|
| [851] | 33 | ///value cut can be written into a <tt>bool</tt> node map by | 
|---|
|  | 34 | ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes | 
|---|
| [836] | 35 | ///the inclusionwise minimum and maximum of the minimum value cuts, | 
|---|
|  | 36 | ///resp.) | 
|---|
|  | 37 | /// | 
|---|
|  | 38 | ///\param Graph The directed graph type the algorithm runs on. | 
|---|
|  | 39 | ///\param Num The number type of the capacities and the flow values. | 
|---|
|  | 40 | ///\param CapMap The capacity map type. | 
|---|
|  | 41 | ///\param FlowMap The flow map type. | 
|---|
|  | 42 | /// | 
|---|
|  | 43 | ///\author Jacint Szabo | 
|---|
|  | 44 | template <typename Graph, typename Num, | 
|---|
|  | 45 | typename CapMap=typename Graph::template EdgeMap<Num>, | 
|---|
|  | 46 | typename FlowMap=typename Graph::template EdgeMap<Num> > | 
|---|
|  | 47 | class Preflow { | 
|---|
|  | 48 | protected: | 
|---|
|  | 49 | typedef typename Graph::Node Node; | 
|---|
|  | 50 | typedef typename Graph::NodeIt NodeIt; | 
|---|
|  | 51 | typedef typename Graph::EdgeIt EdgeIt; | 
|---|
|  | 52 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
|  | 53 | typedef typename Graph::InEdgeIt InEdgeIt; | 
|---|
|  | 54 |  | 
|---|
|  | 55 | typedef typename Graph::template NodeMap<Node> NNMap; | 
|---|
|  | 56 | typedef typename std::vector<Node> VecNode; | 
|---|
|  | 57 |  | 
|---|
|  | 58 | const Graph* g; | 
|---|
|  | 59 | Node s; | 
|---|
|  | 60 | Node t; | 
|---|
|  | 61 | const CapMap* capacity; | 
|---|
|  | 62 | FlowMap* flow; | 
|---|
|  | 63 | int n;      //the number of nodes of G | 
|---|
|  | 64 |  | 
|---|
|  | 65 | typename Graph::template NodeMap<int> level; | 
|---|
|  | 66 | typename Graph::template NodeMap<Num> excess; | 
|---|
|  | 67 |  | 
|---|
|  | 68 | // constants used for heuristics | 
|---|
|  | 69 | static const int H0=20; | 
|---|
|  | 70 | static const int H1=1; | 
|---|
|  | 71 |  | 
|---|
|  | 72 | public: | 
|---|
|  | 73 |  | 
|---|
|  | 74 | ///Indicates the property of the starting flow map. | 
|---|
|  | 75 |  | 
|---|
|  | 76 | ///Indicates the property of the starting flow map. The meanings are as follows: | 
|---|
|  | 77 | ///- \c ZERO_FLOW: constant zero flow | 
|---|
|  | 78 | ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to | 
|---|
|  | 79 | ///the sum of the out-flows in every node except the \e source and | 
|---|
|  | 80 | ///the \e target. | 
|---|
|  | 81 | ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at | 
|---|
|  | 82 | ///least the sum of the out-flows in every node except the \e source. | 
|---|
|  | 83 | ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be | 
|---|
|  | 84 | ///set to the constant zero flow in the beginning of the algorithm in this case. | 
|---|
|  | 85 | /// | 
|---|
|  | 86 | enum FlowEnum{ | 
|---|
|  | 87 | NO_FLOW, | 
|---|
|  | 88 | ZERO_FLOW, | 
|---|
|  | 89 | GEN_FLOW, | 
|---|
|  | 90 | PRE_FLOW | 
|---|
|  | 91 | }; | 
|---|
|  | 92 |  | 
|---|
|  | 93 | ///Indicates the state of the preflow algorithm. | 
|---|
|  | 94 |  | 
|---|
|  | 95 | ///Indicates the state of the preflow algorithm. The meanings are as follows: | 
|---|
|  | 96 | ///- \c AFTER_NOTHING: before running the algorithm or at an unspecified state. | 
|---|
|  | 97 | ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1 | 
|---|
|  | 98 | ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2() | 
|---|
|  | 99 | /// | 
|---|
|  | 100 | enum StatusEnum { | 
|---|
|  | 101 | AFTER_NOTHING, | 
|---|
|  | 102 | AFTER_PREFLOW_PHASE_1, | 
|---|
|  | 103 | AFTER_PREFLOW_PHASE_2 | 
|---|
|  | 104 | }; | 
|---|
|  | 105 |  | 
|---|
|  | 106 | protected: | 
|---|
|  | 107 | FlowEnum flow_prop; | 
|---|
|  | 108 | StatusEnum status; // Do not needle this flag only if necessary. | 
|---|
|  | 109 |  | 
|---|
|  | 110 | public: | 
|---|
|  | 111 | ///The constructor of the class. | 
|---|
|  | 112 |  | 
|---|
|  | 113 | ///The constructor of the class. | 
|---|
|  | 114 | ///\param _G The directed graph the algorithm runs on. | 
|---|
|  | 115 | ///\param _s The source node. | 
|---|
|  | 116 | ///\param _t The target node. | 
|---|
|  | 117 | ///\param _capacity The capacity of the edges. | 
|---|
|  | 118 | ///\param _flow The flow of the edges. | 
|---|
|  | 119 | ///Except the graph, all of these parameters can be reset by | 
|---|
|  | 120 | ///calling \ref setSource, \ref setTarget, \ref setCap and \ref | 
|---|
|  | 121 | ///setFlow, resp. | 
|---|
|  | 122 | Preflow(const Graph& _G, Node _s, Node _t, | 
|---|
|  | 123 | const CapMap& _capacity, FlowMap& _flow) : | 
|---|
|  | 124 | g(&_G), s(_s), t(_t), capacity(&_capacity), | 
|---|
|  | 125 | flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), | 
|---|
|  | 126 | flow_prop(NO_FLOW), status(AFTER_NOTHING) { } | 
|---|
|  | 127 |  | 
|---|
|  | 128 |  | 
|---|
|  | 129 |  | 
|---|
|  | 130 | ///Runs the preflow algorithm. | 
|---|
|  | 131 |  | 
|---|
| [851] | 132 | ///Runs the preflow algorithm. | 
|---|
|  | 133 | /// | 
|---|
| [836] | 134 | void run() { | 
|---|
|  | 135 | phase1(flow_prop); | 
|---|
|  | 136 | phase2(); | 
|---|
|  | 137 | } | 
|---|
|  | 138 |  | 
|---|
|  | 139 | ///Runs the preflow algorithm. | 
|---|
|  | 140 |  | 
|---|
|  | 141 | ///Runs the preflow algorithm. | 
|---|
|  | 142 | ///\pre The starting flow map must be | 
|---|
|  | 143 | /// - a constant zero flow if \c fp is \c ZERO_FLOW, | 
|---|
|  | 144 | /// - an arbitrary flow if \c fp is \c GEN_FLOW, | 
|---|
|  | 145 | /// - an arbitrary preflow if \c fp is \c PRE_FLOW, | 
|---|
|  | 146 | /// - any map if \c fp is NO_FLOW. | 
|---|
|  | 147 | ///If the starting flow map is a flow or a preflow then | 
|---|
|  | 148 | ///the algorithm terminates faster. | 
|---|
|  | 149 | void run(FlowEnum fp) { | 
|---|
|  | 150 | flow_prop=fp; | 
|---|
|  | 151 | run(); | 
|---|
|  | 152 | } | 
|---|
|  | 153 |  | 
|---|
|  | 154 | ///Runs the first phase of the preflow algorithm. | 
|---|
|  | 155 |  | 
|---|
|  | 156 | ///The preflow algorithm consists of two phases, this method runs the | 
|---|
|  | 157 | ///first phase. After the first phase the maximum flow value and a | 
|---|
|  | 158 | ///minimum value cut can already be computed, though a maximum flow | 
|---|
|  | 159 | ///is not yet obtained. So after calling this method \ref flowValue | 
|---|
|  | 160 | ///and \ref minCut gives proper results. | 
|---|
| [851] | 161 | ///\warning \ref minMinCut and \ref maxMinCut do not | 
|---|
| [836] | 162 | ///give minimum value cuts unless calling \ref phase2. | 
|---|
|  | 163 | ///\pre The starting flow must be | 
|---|
|  | 164 | /// - a constant zero flow if \c fp is \c ZERO_FLOW, | 
|---|
|  | 165 | /// - an arbitary flow if \c fp is \c GEN_FLOW, | 
|---|
|  | 166 | /// - an arbitary preflow if \c fp is \c PRE_FLOW, | 
|---|
|  | 167 | /// - any map if \c fp is NO_FLOW. | 
|---|
|  | 168 | void phase1(FlowEnum fp) | 
|---|
|  | 169 | { | 
|---|
|  | 170 | flow_prop=fp; | 
|---|
|  | 171 | phase1(); | 
|---|
|  | 172 | } | 
|---|
|  | 173 |  | 
|---|
|  | 174 |  | 
|---|
|  | 175 | ///Runs the first phase of the preflow algorithm. | 
|---|
|  | 176 |  | 
|---|
|  | 177 | ///The preflow algorithm consists of two phases, this method runs the | 
|---|
|  | 178 | ///first phase. After the first phase the maximum flow value and a | 
|---|
|  | 179 | ///minimum value cut can already be computed, though a maximum flow | 
|---|
|  | 180 | ///is not yet obtained. So after calling this method \ref flowValue | 
|---|
|  | 181 | ///and \ref actMinCut gives proper results. | 
|---|
| [851] | 182 | ///\warning \ref minCut, \ref minMinCut and \ref maxMinCut do not | 
|---|
| [836] | 183 | ///give minimum value cuts unless calling \ref phase2. | 
|---|
|  | 184 | void phase1() | 
|---|
|  | 185 | { | 
|---|
|  | 186 | int heur0=(int)(H0*n);  //time while running 'bound decrease' | 
|---|
|  | 187 | int heur1=(int)(H1*n);  //time while running 'highest label' | 
|---|
|  | 188 | int heur=heur1;         //starting time interval (#of relabels) | 
|---|
|  | 189 | int numrelabel=0; | 
|---|
|  | 190 |  | 
|---|
|  | 191 | bool what_heur=1; | 
|---|
|  | 192 | //It is 0 in case 'bound decrease' and 1 in case 'highest label' | 
|---|
|  | 193 |  | 
|---|
|  | 194 | bool end=false; | 
|---|
|  | 195 | //Needed for 'bound decrease', true means no active | 
|---|
|  | 196 | //nodes are above bound b. | 
|---|
|  | 197 |  | 
|---|
|  | 198 | int k=n-2;  //bound on the highest level under n containing a node | 
|---|
|  | 199 | int b=k;    //bound on the highest level under n of an active node | 
|---|
|  | 200 |  | 
|---|
|  | 201 | VecNode first(n, INVALID); | 
|---|
|  | 202 | NNMap next(*g, INVALID); | 
|---|
|  | 203 |  | 
|---|
|  | 204 | NNMap left(*g, INVALID); | 
|---|
|  | 205 | NNMap right(*g, INVALID); | 
|---|
|  | 206 | VecNode level_list(n,INVALID); | 
|---|
|  | 207 | //List of the nodes in level i<n, set to n. | 
|---|
|  | 208 |  | 
|---|
|  | 209 | preflowPreproc(first, next, level_list, left, right); | 
|---|
|  | 210 |  | 
|---|
|  | 211 | //Push/relabel on the highest level active nodes. | 
|---|
|  | 212 | while ( true ) { | 
|---|
|  | 213 | if ( b == 0 ) { | 
|---|
|  | 214 | if ( !what_heur && !end && k > 0 ) { | 
|---|
|  | 215 | b=k; | 
|---|
|  | 216 | end=true; | 
|---|
|  | 217 | } else break; | 
|---|
|  | 218 | } | 
|---|
|  | 219 |  | 
|---|
|  | 220 | if ( first[b]==INVALID ) --b; | 
|---|
|  | 221 | else { | 
|---|
|  | 222 | end=false; | 
|---|
|  | 223 | Node w=first[b]; | 
|---|
|  | 224 | first[b]=next[w]; | 
|---|
|  | 225 | int newlevel=push(w, next, first); | 
|---|
|  | 226 | if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, | 
|---|
|  | 227 | left, right, b, k, what_heur); | 
|---|
|  | 228 |  | 
|---|
|  | 229 | ++numrelabel; | 
|---|
|  | 230 | if ( numrelabel >= heur ) { | 
|---|
|  | 231 | numrelabel=0; | 
|---|
|  | 232 | if ( what_heur ) { | 
|---|
|  | 233 | what_heur=0; | 
|---|
|  | 234 | heur=heur0; | 
|---|
|  | 235 | end=false; | 
|---|
|  | 236 | } else { | 
|---|
|  | 237 | what_heur=1; | 
|---|
|  | 238 | heur=heur1; | 
|---|
|  | 239 | b=k; | 
|---|
|  | 240 | } | 
|---|
|  | 241 | } | 
|---|
|  | 242 | } | 
|---|
|  | 243 | } | 
|---|
|  | 244 | flow_prop=PRE_FLOW; | 
|---|
|  | 245 | status=AFTER_PREFLOW_PHASE_1; | 
|---|
|  | 246 | } | 
|---|
|  | 247 | // Heuristics: | 
|---|
|  | 248 | //   2 phase | 
|---|
|  | 249 | //   gap | 
|---|
|  | 250 | //   list 'level_list' on the nodes on level i implemented by hand | 
|---|
|  | 251 | //   stack 'active' on the active nodes on level i | 
|---|
|  | 252 | //   runs heuristic 'highest label' for H1*n relabels | 
|---|
|  | 253 | //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' | 
|---|
|  | 254 | //   Parameters H0 and H1 are initialized to 20 and 1. | 
|---|
|  | 255 |  | 
|---|
|  | 256 |  | 
|---|
|  | 257 | ///Runs the second phase of the preflow algorithm. | 
|---|
|  | 258 |  | 
|---|
|  | 259 | ///The preflow algorithm consists of two phases, this method runs | 
|---|
|  | 260 | ///the second phase. After calling \ref phase1 and then | 
|---|
|  | 261 | ///\ref phase2 the methods \ref flowValue, \ref minCut, | 
|---|
|  | 262 | ///\ref minMinCut and \ref maxMinCut give proper results. | 
|---|
|  | 263 | ///\pre \ref phase1 must be called before. | 
|---|
|  | 264 | void phase2() | 
|---|
|  | 265 | { | 
|---|
|  | 266 |  | 
|---|
|  | 267 | int k=n-2;  //bound on the highest level under n containing a node | 
|---|
|  | 268 | int b=k;    //bound on the highest level under n of an active node | 
|---|
|  | 269 |  | 
|---|
|  | 270 |  | 
|---|
|  | 271 | VecNode first(n, INVALID); | 
|---|
|  | 272 | NNMap next(*g, INVALID); | 
|---|
|  | 273 | level.set(s,0); | 
|---|
|  | 274 | std::queue<Node> bfs_queue; | 
|---|
|  | 275 | bfs_queue.push(s); | 
|---|
|  | 276 |  | 
|---|
|  | 277 | while ( !bfs_queue.empty() ) { | 
|---|
|  | 278 |  | 
|---|
|  | 279 | Node v=bfs_queue.front(); | 
|---|
|  | 280 | bfs_queue.pop(); | 
|---|
|  | 281 | int l=level[v]+1; | 
|---|
|  | 282 |  | 
|---|
|  | 283 | for(InEdgeIt e(*g,v); e!=INVALID; ++e) { | 
|---|
|  | 284 | if ( (*capacity)[e] <= (*flow)[e] ) continue; | 
|---|
|  | 285 | Node u=g->tail(e); | 
|---|
|  | 286 | if ( level[u] >= n ) { | 
|---|
|  | 287 | bfs_queue.push(u); | 
|---|
|  | 288 | level.set(u, l); | 
|---|
|  | 289 | if ( excess[u] > 0 ) { | 
|---|
|  | 290 | next.set(u,first[l]); | 
|---|
|  | 291 | first[l]=u; | 
|---|
|  | 292 | } | 
|---|
|  | 293 | } | 
|---|
|  | 294 | } | 
|---|
|  | 295 |  | 
|---|
|  | 296 | for(OutEdgeIt e(*g,v); e!=INVALID; ++e) { | 
|---|
|  | 297 | if ( 0 >= (*flow)[e] ) continue; | 
|---|
|  | 298 | Node u=g->head(e); | 
|---|
|  | 299 | if ( level[u] >= n ) { | 
|---|
|  | 300 | bfs_queue.push(u); | 
|---|
|  | 301 | level.set(u, l); | 
|---|
|  | 302 | if ( excess[u] > 0 ) { | 
|---|
|  | 303 | next.set(u,first[l]); | 
|---|
|  | 304 | first[l]=u; | 
|---|
|  | 305 | } | 
|---|
|  | 306 | } | 
|---|
|  | 307 | } | 
|---|
|  | 308 | } | 
|---|
|  | 309 | b=n-2; | 
|---|
|  | 310 |  | 
|---|
|  | 311 | while ( true ) { | 
|---|
|  | 312 |  | 
|---|
|  | 313 | if ( b == 0 ) break; | 
|---|
|  | 314 | if ( first[b]==INVALID ) --b; | 
|---|
|  | 315 | else { | 
|---|
|  | 316 | Node w=first[b]; | 
|---|
|  | 317 | first[b]=next[w]; | 
|---|
|  | 318 | int newlevel=push(w,next, first); | 
|---|
|  | 319 |  | 
|---|
|  | 320 | //relabel | 
|---|
|  | 321 | if ( excess[w] > 0 ) { | 
|---|
|  | 322 | level.set(w,++newlevel); | 
|---|
|  | 323 | next.set(w,first[newlevel]); | 
|---|
|  | 324 | first[newlevel]=w; | 
|---|
|  | 325 | b=newlevel; | 
|---|
|  | 326 | } | 
|---|
|  | 327 | } | 
|---|
|  | 328 | } // while(true) | 
|---|
|  | 329 | flow_prop=GEN_FLOW; | 
|---|
|  | 330 | status=AFTER_PREFLOW_PHASE_2; | 
|---|
|  | 331 | } | 
|---|
|  | 332 |  | 
|---|
|  | 333 | /// Returns the value of the maximum flow. | 
|---|
|  | 334 |  | 
|---|
|  | 335 | /// Returns the value of the maximum flow by returning the excess | 
|---|
|  | 336 | /// of the target node \ref t. This value equals to the value of | 
|---|
|  | 337 | /// the maximum flow already after running \ref phase1. | 
|---|
|  | 338 | Num flowValue() const { | 
|---|
|  | 339 | return excess[t]; | 
|---|
|  | 340 | } | 
|---|
|  | 341 |  | 
|---|
|  | 342 |  | 
|---|
|  | 343 | ///Returns a minimum value cut. | 
|---|
|  | 344 |  | 
|---|
|  | 345 | ///Sets \c M to the characteristic vector of a minimum value | 
|---|
|  | 346 | ///cut. This method can be called both after running \ref | 
|---|
|  | 347 | ///phase1 and \ref phase2. It is much faster after | 
|---|
| [849] | 348 | ///\ref phase1.  \pre M should be a bool-valued node-map. \pre | 
|---|
| [836] | 349 | ///If \ref mincut is called after \ref phase2 then M should | 
|---|
|  | 350 | ///be initialized to false. | 
|---|
|  | 351 | template<typename _CutMap> | 
|---|
|  | 352 | void minCut(_CutMap& M) const { | 
|---|
|  | 353 | switch ( status ) { | 
|---|
|  | 354 | case AFTER_PREFLOW_PHASE_1: | 
|---|
|  | 355 | for(NodeIt v(*g); v!=INVALID; ++v) { | 
|---|
|  | 356 | if (level[v] < n) { | 
|---|
|  | 357 | M.set(v, false); | 
|---|
|  | 358 | } else { | 
|---|
|  | 359 | M.set(v, true); | 
|---|
|  | 360 | } | 
|---|
|  | 361 | } | 
|---|
|  | 362 | break; | 
|---|
|  | 363 | case AFTER_PREFLOW_PHASE_2: | 
|---|
|  | 364 | minMinCut(M); | 
|---|
|  | 365 | break; | 
|---|
|  | 366 | case AFTER_NOTHING: | 
|---|
|  | 367 | break; | 
|---|
|  | 368 | } | 
|---|
|  | 369 | } | 
|---|
|  | 370 |  | 
|---|
|  | 371 | ///Returns the inclusionwise minimum of the minimum value cuts. | 
|---|
|  | 372 |  | 
|---|
|  | 373 | ///Sets \c M to the characteristic vector of the minimum value cut | 
|---|
|  | 374 | ///which is inclusionwise minimum. It is computed by processing a | 
|---|
|  | 375 | ///bfs from the source node \c s in the residual graph.  \pre M | 
|---|
|  | 376 | ///should be a node map of bools initialized to false.  \pre \ref | 
|---|
|  | 377 | ///phase2 should already be run. | 
|---|
|  | 378 | template<typename _CutMap> | 
|---|
|  | 379 | void minMinCut(_CutMap& M) const { | 
|---|
|  | 380 |  | 
|---|
|  | 381 | std::queue<Node> queue; | 
|---|
|  | 382 | M.set(s,true); | 
|---|
|  | 383 | queue.push(s); | 
|---|
|  | 384 |  | 
|---|
|  | 385 | while (!queue.empty()) { | 
|---|
|  | 386 | Node w=queue.front(); | 
|---|
|  | 387 | queue.pop(); | 
|---|
|  | 388 |  | 
|---|
|  | 389 | for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
|  | 390 | Node v=g->head(e); | 
|---|
|  | 391 | if (!M[v] && (*flow)[e] < (*capacity)[e] ) { | 
|---|
|  | 392 | queue.push(v); | 
|---|
|  | 393 | M.set(v, true); | 
|---|
|  | 394 | } | 
|---|
|  | 395 | } | 
|---|
|  | 396 |  | 
|---|
|  | 397 | for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
|  | 398 | Node v=g->tail(e); | 
|---|
|  | 399 | if (!M[v] && (*flow)[e] > 0 ) { | 
|---|
|  | 400 | queue.push(v); | 
|---|
|  | 401 | M.set(v, true); | 
|---|
|  | 402 | } | 
|---|
|  | 403 | } | 
|---|
|  | 404 | } | 
|---|
|  | 405 | } | 
|---|
|  | 406 |  | 
|---|
|  | 407 | ///Returns the inclusionwise maximum of the minimum value cuts. | 
|---|
|  | 408 |  | 
|---|
|  | 409 | ///Sets \c M to the characteristic vector of the minimum value cut | 
|---|
|  | 410 | ///which is inclusionwise maximum. It is computed by processing a | 
|---|
|  | 411 | ///backward bfs from the target node \c t in the residual graph. | 
|---|
|  | 412 | ///\pre \ref phase2() or preflow() should already be run. | 
|---|
|  | 413 | template<typename _CutMap> | 
|---|
|  | 414 | void maxMinCut(_CutMap& M) const { | 
|---|
|  | 415 |  | 
|---|
|  | 416 | for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true); | 
|---|
|  | 417 |  | 
|---|
|  | 418 | std::queue<Node> queue; | 
|---|
|  | 419 |  | 
|---|
|  | 420 | M.set(t,false); | 
|---|
|  | 421 | queue.push(t); | 
|---|
|  | 422 |  | 
|---|
|  | 423 | while (!queue.empty()) { | 
|---|
|  | 424 | Node w=queue.front(); | 
|---|
|  | 425 | queue.pop(); | 
|---|
|  | 426 |  | 
|---|
|  | 427 | for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
|  | 428 | Node v=g->tail(e); | 
|---|
|  | 429 | if (M[v] && (*flow)[e] < (*capacity)[e] ) { | 
|---|
|  | 430 | queue.push(v); | 
|---|
|  | 431 | M.set(v, false); | 
|---|
|  | 432 | } | 
|---|
|  | 433 | } | 
|---|
|  | 434 |  | 
|---|
|  | 435 | for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
|  | 436 | Node v=g->head(e); | 
|---|
|  | 437 | if (M[v] && (*flow)[e] > 0 ) { | 
|---|
|  | 438 | queue.push(v); | 
|---|
|  | 439 | M.set(v, false); | 
|---|
|  | 440 | } | 
|---|
|  | 441 | } | 
|---|
|  | 442 | } | 
|---|
|  | 443 | } | 
|---|
|  | 444 |  | 
|---|
|  | 445 | ///Sets the source node to \c _s. | 
|---|
|  | 446 |  | 
|---|
|  | 447 | ///Sets the source node to \c _s. | 
|---|
|  | 448 | /// | 
|---|
|  | 449 | void setSource(Node _s) { | 
|---|
|  | 450 | s=_s; | 
|---|
|  | 451 | if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW; | 
|---|
|  | 452 | status=AFTER_NOTHING; | 
|---|
|  | 453 | } | 
|---|
|  | 454 |  | 
|---|
|  | 455 | ///Sets the target node to \c _t. | 
|---|
|  | 456 |  | 
|---|
|  | 457 | ///Sets the target node to \c _t. | 
|---|
|  | 458 | /// | 
|---|
|  | 459 | void setTarget(Node _t) { | 
|---|
|  | 460 | t=_t; | 
|---|
|  | 461 | if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW; | 
|---|
|  | 462 | status=AFTER_NOTHING; | 
|---|
|  | 463 | } | 
|---|
|  | 464 |  | 
|---|
|  | 465 | /// Sets the edge map of the capacities to _cap. | 
|---|
|  | 466 |  | 
|---|
|  | 467 | /// Sets the edge map of the capacities to _cap. | 
|---|
|  | 468 | /// | 
|---|
|  | 469 | void setCap(const CapMap& _cap) { | 
|---|
|  | 470 | capacity=&_cap; | 
|---|
|  | 471 | status=AFTER_NOTHING; | 
|---|
|  | 472 | } | 
|---|
|  | 473 |  | 
|---|
|  | 474 | /// Sets the edge map of the flows to _flow. | 
|---|
|  | 475 |  | 
|---|
|  | 476 | /// Sets the edge map of the flows to _flow. | 
|---|
|  | 477 | /// | 
|---|
|  | 478 | void setFlow(FlowMap& _flow) { | 
|---|
|  | 479 | flow=&_flow; | 
|---|
|  | 480 | flow_prop=NO_FLOW; | 
|---|
|  | 481 | status=AFTER_NOTHING; | 
|---|
|  | 482 | } | 
|---|
|  | 483 |  | 
|---|
|  | 484 |  | 
|---|
|  | 485 | private: | 
|---|
|  | 486 |  | 
|---|
|  | 487 | int push(Node w, NNMap& next, VecNode& first) { | 
|---|
|  | 488 |  | 
|---|
|  | 489 | int lev=level[w]; | 
|---|
|  | 490 | Num exc=excess[w]; | 
|---|
|  | 491 | int newlevel=n;       //bound on the next level of w | 
|---|
|  | 492 |  | 
|---|
|  | 493 | for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
|  | 494 | if ( (*flow)[e] >= (*capacity)[e] ) continue; | 
|---|
|  | 495 | Node v=g->head(e); | 
|---|
|  | 496 |  | 
|---|
|  | 497 | if( lev > level[v] ) { //Push is allowed now | 
|---|
|  | 498 |  | 
|---|
|  | 499 | if ( excess[v]<=0 && v!=t && v!=s ) { | 
|---|
|  | 500 | next.set(v,first[level[v]]); | 
|---|
|  | 501 | first[level[v]]=v; | 
|---|
|  | 502 | } | 
|---|
|  | 503 |  | 
|---|
|  | 504 | Num cap=(*capacity)[e]; | 
|---|
|  | 505 | Num flo=(*flow)[e]; | 
|---|
|  | 506 | Num remcap=cap-flo; | 
|---|
|  | 507 |  | 
|---|
|  | 508 | if ( remcap >= exc ) { //A nonsaturating push. | 
|---|
|  | 509 |  | 
|---|
|  | 510 | flow->set(e, flo+exc); | 
|---|
|  | 511 | excess.set(v, excess[v]+exc); | 
|---|
|  | 512 | exc=0; | 
|---|
|  | 513 | break; | 
|---|
|  | 514 |  | 
|---|
|  | 515 | } else { //A saturating push. | 
|---|
|  | 516 | flow->set(e, cap); | 
|---|
|  | 517 | excess.set(v, excess[v]+remcap); | 
|---|
|  | 518 | exc-=remcap; | 
|---|
|  | 519 | } | 
|---|
|  | 520 | } else if ( newlevel > level[v] ) newlevel = level[v]; | 
|---|
|  | 521 | } //for out edges wv | 
|---|
|  | 522 |  | 
|---|
|  | 523 | if ( exc > 0 ) { | 
|---|
|  | 524 | for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
|  | 525 |  | 
|---|
|  | 526 | if( (*flow)[e] <= 0 ) continue; | 
|---|
|  | 527 | Node v=g->tail(e); | 
|---|
|  | 528 |  | 
|---|
|  | 529 | if( lev > level[v] ) { //Push is allowed now | 
|---|
|  | 530 |  | 
|---|
|  | 531 | if ( excess[v]<=0 && v!=t && v!=s ) { | 
|---|
|  | 532 | next.set(v,first[level[v]]); | 
|---|
|  | 533 | first[level[v]]=v; | 
|---|
|  | 534 | } | 
|---|
|  | 535 |  | 
|---|
|  | 536 | Num flo=(*flow)[e]; | 
|---|
|  | 537 |  | 
|---|
|  | 538 | if ( flo >= exc ) { //A nonsaturating push. | 
|---|
|  | 539 |  | 
|---|
|  | 540 | flow->set(e, flo-exc); | 
|---|
|  | 541 | excess.set(v, excess[v]+exc); | 
|---|
|  | 542 | exc=0; | 
|---|
|  | 543 | break; | 
|---|
|  | 544 | } else {  //A saturating push. | 
|---|
|  | 545 |  | 
|---|
|  | 546 | excess.set(v, excess[v]+flo); | 
|---|
|  | 547 | exc-=flo; | 
|---|
|  | 548 | flow->set(e,0); | 
|---|
|  | 549 | } | 
|---|
|  | 550 | } else if ( newlevel > level[v] ) newlevel = level[v]; | 
|---|
|  | 551 | } //for in edges vw | 
|---|
|  | 552 |  | 
|---|
|  | 553 | } // if w still has excess after the out edge for cycle | 
|---|
|  | 554 |  | 
|---|
|  | 555 | excess.set(w, exc); | 
|---|
|  | 556 |  | 
|---|
|  | 557 | return newlevel; | 
|---|
|  | 558 | } | 
|---|
|  | 559 |  | 
|---|
|  | 560 |  | 
|---|
|  | 561 |  | 
|---|
|  | 562 | void preflowPreproc(VecNode& first, NNMap& next, | 
|---|
|  | 563 | VecNode& level_list, NNMap& left, NNMap& right) | 
|---|
|  | 564 | { | 
|---|
|  | 565 | for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n); | 
|---|
|  | 566 | std::queue<Node> bfs_queue; | 
|---|
|  | 567 |  | 
|---|
|  | 568 | if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) { | 
|---|
|  | 569 | //Reverse_bfs from t in the residual graph, | 
|---|
|  | 570 | //to find the starting level. | 
|---|
|  | 571 | level.set(t,0); | 
|---|
|  | 572 | bfs_queue.push(t); | 
|---|
|  | 573 |  | 
|---|
|  | 574 | while ( !bfs_queue.empty() ) { | 
|---|
|  | 575 |  | 
|---|
|  | 576 | Node v=bfs_queue.front(); | 
|---|
|  | 577 | bfs_queue.pop(); | 
|---|
|  | 578 | int l=level[v]+1; | 
|---|
|  | 579 |  | 
|---|
|  | 580 | for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { | 
|---|
|  | 581 | if ( (*capacity)[e] <= (*flow)[e] ) continue; | 
|---|
|  | 582 | Node w=g->tail(e); | 
|---|
|  | 583 | if ( level[w] == n && w != s ) { | 
|---|
|  | 584 | bfs_queue.push(w); | 
|---|
|  | 585 | Node z=level_list[l]; | 
|---|
|  | 586 | if ( z!=INVALID ) left.set(z,w); | 
|---|
|  | 587 | right.set(w,z); | 
|---|
|  | 588 | level_list[l]=w; | 
|---|
|  | 589 | level.set(w, l); | 
|---|
|  | 590 | } | 
|---|
|  | 591 | } | 
|---|
|  | 592 |  | 
|---|
|  | 593 | for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) { | 
|---|
|  | 594 | if ( 0 >= (*flow)[e] ) continue; | 
|---|
|  | 595 | Node w=g->head(e); | 
|---|
|  | 596 | if ( level[w] == n && w != s ) { | 
|---|
|  | 597 | bfs_queue.push(w); | 
|---|
|  | 598 | Node z=level_list[l]; | 
|---|
|  | 599 | if ( z!=INVALID ) left.set(z,w); | 
|---|
|  | 600 | right.set(w,z); | 
|---|
|  | 601 | level_list[l]=w; | 
|---|
|  | 602 | level.set(w, l); | 
|---|
|  | 603 | } | 
|---|
|  | 604 | } | 
|---|
|  | 605 | } //while | 
|---|
|  | 606 | } //if | 
|---|
|  | 607 |  | 
|---|
|  | 608 |  | 
|---|
|  | 609 | switch (flow_prop) { | 
|---|
|  | 610 | case NO_FLOW: | 
|---|
|  | 611 | for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0); | 
|---|
|  | 612 | case ZERO_FLOW: | 
|---|
|  | 613 | for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); | 
|---|
|  | 614 |  | 
|---|
|  | 615 | //Reverse_bfs from t, to find the starting level. | 
|---|
|  | 616 | level.set(t,0); | 
|---|
|  | 617 | bfs_queue.push(t); | 
|---|
|  | 618 |  | 
|---|
|  | 619 | while ( !bfs_queue.empty() ) { | 
|---|
|  | 620 |  | 
|---|
|  | 621 | Node v=bfs_queue.front(); | 
|---|
|  | 622 | bfs_queue.pop(); | 
|---|
|  | 623 | int l=level[v]+1; | 
|---|
|  | 624 |  | 
|---|
|  | 625 | for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { | 
|---|
|  | 626 | Node w=g->tail(e); | 
|---|
|  | 627 | if ( level[w] == n && w != s ) { | 
|---|
|  | 628 | bfs_queue.push(w); | 
|---|
|  | 629 | Node z=level_list[l]; | 
|---|
|  | 630 | if ( z!=INVALID ) left.set(z,w); | 
|---|
|  | 631 | right.set(w,z); | 
|---|
|  | 632 | level_list[l]=w; | 
|---|
|  | 633 | level.set(w, l); | 
|---|
|  | 634 | } | 
|---|
|  | 635 | } | 
|---|
|  | 636 | } | 
|---|
|  | 637 |  | 
|---|
|  | 638 | //the starting flow | 
|---|
|  | 639 | for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) { | 
|---|
|  | 640 | Num c=(*capacity)[e]; | 
|---|
|  | 641 | if ( c <= 0 ) continue; | 
|---|
|  | 642 | Node w=g->head(e); | 
|---|
|  | 643 | if ( level[w] < n ) { | 
|---|
|  | 644 | if ( excess[w] <= 0 && w!=t ) { //putting into the stack | 
|---|
|  | 645 | next.set(w,first[level[w]]); | 
|---|
|  | 646 | first[level[w]]=w; | 
|---|
|  | 647 | } | 
|---|
|  | 648 | flow->set(e, c); | 
|---|
|  | 649 | excess.set(w, excess[w]+c); | 
|---|
|  | 650 | } | 
|---|
|  | 651 | } | 
|---|
|  | 652 | break; | 
|---|
|  | 653 |  | 
|---|
|  | 654 | case GEN_FLOW: | 
|---|
|  | 655 | for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); | 
|---|
|  | 656 | { | 
|---|
|  | 657 | Num exc=0; | 
|---|
|  | 658 | for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e]; | 
|---|
|  | 659 | for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e]; | 
|---|
|  | 660 | excess.set(t,exc); | 
|---|
|  | 661 | } | 
|---|
|  | 662 |  | 
|---|
|  | 663 | //the starting flow | 
|---|
|  | 664 | for(OutEdgeIt e(*g,s); e!=INVALID; ++e) { | 
|---|
|  | 665 | Num rem=(*capacity)[e]-(*flow)[e]; | 
|---|
|  | 666 | if ( rem <= 0 ) continue; | 
|---|
|  | 667 | Node w=g->head(e); | 
|---|
|  | 668 | if ( level[w] < n ) { | 
|---|
|  | 669 | if ( excess[w] <= 0 && w!=t ) { //putting into the stack | 
|---|
|  | 670 | next.set(w,first[level[w]]); | 
|---|
|  | 671 | first[level[w]]=w; | 
|---|
|  | 672 | } | 
|---|
|  | 673 | flow->set(e, (*capacity)[e]); | 
|---|
|  | 674 | excess.set(w, excess[w]+rem); | 
|---|
|  | 675 | } | 
|---|
|  | 676 | } | 
|---|
|  | 677 |  | 
|---|
|  | 678 | for(InEdgeIt e(*g,s); e!=INVALID; ++e) { | 
|---|
|  | 679 | if ( (*flow)[e] <= 0 ) continue; | 
|---|
|  | 680 | Node w=g->tail(e); | 
|---|
|  | 681 | if ( level[w] < n ) { | 
|---|
|  | 682 | if ( excess[w] <= 0 && w!=t ) { | 
|---|
|  | 683 | next.set(w,first[level[w]]); | 
|---|
|  | 684 | first[level[w]]=w; | 
|---|
|  | 685 | } | 
|---|
|  | 686 | excess.set(w, excess[w]+(*flow)[e]); | 
|---|
|  | 687 | flow->set(e, 0); | 
|---|
|  | 688 | } | 
|---|
|  | 689 | } | 
|---|
|  | 690 | break; | 
|---|
|  | 691 |  | 
|---|
|  | 692 | case PRE_FLOW: | 
|---|
|  | 693 | //the starting flow | 
|---|
|  | 694 | for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) { | 
|---|
|  | 695 | Num rem=(*capacity)[e]-(*flow)[e]; | 
|---|
|  | 696 | if ( rem <= 0 ) continue; | 
|---|
|  | 697 | Node w=g->head(e); | 
|---|
|  | 698 | if ( level[w] < n ) flow->set(e, (*capacity)[e]); | 
|---|
|  | 699 | } | 
|---|
|  | 700 |  | 
|---|
|  | 701 | for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) { | 
|---|
|  | 702 | if ( (*flow)[e] <= 0 ) continue; | 
|---|
|  | 703 | Node w=g->tail(e); | 
|---|
|  | 704 | if ( level[w] < n ) flow->set(e, 0); | 
|---|
|  | 705 | } | 
|---|
|  | 706 |  | 
|---|
|  | 707 | //computing the excess | 
|---|
|  | 708 | for(NodeIt w(*g); w!=INVALID; ++w) { | 
|---|
|  | 709 | Num exc=0; | 
|---|
|  | 710 | for(InEdgeIt e(*g,w); e!=INVALID; ++e) exc+=(*flow)[e]; | 
|---|
|  | 711 | for(OutEdgeIt e(*g,w); e!=INVALID; ++e) exc-=(*flow)[e]; | 
|---|
|  | 712 | excess.set(w,exc); | 
|---|
|  | 713 |  | 
|---|
|  | 714 | //putting the active nodes into the stack | 
|---|
|  | 715 | int lev=level[w]; | 
|---|
|  | 716 | if ( exc > 0 && lev < n && Node(w) != t ) { | 
|---|
|  | 717 | next.set(w,first[lev]); | 
|---|
|  | 718 | first[lev]=w; | 
|---|
|  | 719 | } | 
|---|
|  | 720 | } | 
|---|
|  | 721 | break; | 
|---|
|  | 722 | } //switch | 
|---|
|  | 723 | } //preflowPreproc | 
|---|
|  | 724 |  | 
|---|
|  | 725 |  | 
|---|
|  | 726 | void relabel(Node w, int newlevel, VecNode& first, NNMap& next, | 
|---|
|  | 727 | VecNode& level_list, NNMap& left, | 
|---|
|  | 728 | NNMap& right, int& b, int& k, bool what_heur ) | 
|---|
|  | 729 | { | 
|---|
|  | 730 |  | 
|---|
|  | 731 | int lev=level[w]; | 
|---|
|  | 732 |  | 
|---|
|  | 733 | Node right_n=right[w]; | 
|---|
|  | 734 | Node left_n=left[w]; | 
|---|
|  | 735 |  | 
|---|
|  | 736 | //unlacing starts | 
|---|
|  | 737 | if ( right_n!=INVALID ) { | 
|---|
|  | 738 | if ( left_n!=INVALID ) { | 
|---|
|  | 739 | right.set(left_n, right_n); | 
|---|
|  | 740 | left.set(right_n, left_n); | 
|---|
|  | 741 | } else { | 
|---|
|  | 742 | level_list[lev]=right_n; | 
|---|
|  | 743 | left.set(right_n, INVALID); | 
|---|
|  | 744 | } | 
|---|
|  | 745 | } else { | 
|---|
|  | 746 | if ( left_n!=INVALID ) { | 
|---|
|  | 747 | right.set(left_n, INVALID); | 
|---|
|  | 748 | } else { | 
|---|
|  | 749 | level_list[lev]=INVALID; | 
|---|
|  | 750 | } | 
|---|
|  | 751 | } | 
|---|
|  | 752 | //unlacing ends | 
|---|
|  | 753 |  | 
|---|
|  | 754 | if ( level_list[lev]==INVALID ) { | 
|---|
|  | 755 |  | 
|---|
|  | 756 | //gapping starts | 
|---|
|  | 757 | for (int i=lev; i!=k ; ) { | 
|---|
|  | 758 | Node v=level_list[++i]; | 
|---|
|  | 759 | while ( v!=INVALID ) { | 
|---|
|  | 760 | level.set(v,n); | 
|---|
|  | 761 | v=right[v]; | 
|---|
|  | 762 | } | 
|---|
|  | 763 | level_list[i]=INVALID; | 
|---|
|  | 764 | if ( !what_heur ) first[i]=INVALID; | 
|---|
|  | 765 | } | 
|---|
|  | 766 |  | 
|---|
|  | 767 | level.set(w,n); | 
|---|
|  | 768 | b=lev-1; | 
|---|
|  | 769 | k=b; | 
|---|
|  | 770 | //gapping ends | 
|---|
|  | 771 |  | 
|---|
|  | 772 | } else { | 
|---|
|  | 773 |  | 
|---|
|  | 774 | if ( newlevel == n ) level.set(w,n); | 
|---|
|  | 775 | else { | 
|---|
|  | 776 | level.set(w,++newlevel); | 
|---|
|  | 777 | next.set(w,first[newlevel]); | 
|---|
|  | 778 | first[newlevel]=w; | 
|---|
|  | 779 | if ( what_heur ) b=newlevel; | 
|---|
|  | 780 | if ( k < newlevel ) ++k;      //now k=newlevel | 
|---|
|  | 781 | Node z=level_list[newlevel]; | 
|---|
|  | 782 | if ( z!=INVALID ) left.set(z,w); | 
|---|
|  | 783 | right.set(w,z); | 
|---|
|  | 784 | left.set(w,INVALID); | 
|---|
|  | 785 | level_list[newlevel]=w; | 
|---|
|  | 786 | } | 
|---|
|  | 787 | } | 
|---|
|  | 788 | } //relabel | 
|---|
|  | 789 |  | 
|---|
|  | 790 | }; | 
|---|
|  | 791 | } //namespace hugo | 
|---|
|  | 792 |  | 
|---|
|  | 793 | #endif //HUGO_PREFLOW_H | 
|---|
|  | 794 |  | 
|---|
|  | 795 |  | 
|---|
|  | 796 |  | 
|---|
|  | 797 |  | 
|---|