| 1 | // -*- C++ -*- | 
|---|
| 2 | #ifndef HUGO_PREFLOW_H | 
|---|
| 3 | #define HUGO_PREFLOW_H | 
|---|
| 4 |  | 
|---|
| 5 | #include <vector> | 
|---|
| 6 | #include <queue> | 
|---|
| 7 |  | 
|---|
| 8 | #include <hugo/invalid.h> | 
|---|
| 9 | #include <hugo/maps.h> | 
|---|
| 10 |  | 
|---|
| 11 | /// \file | 
|---|
| 12 | /// \ingroup flowalgs | 
|---|
| 13 | /// Implementation of the preflow algorithm. | 
|---|
| 14 |  | 
|---|
| 15 | namespace hugo { | 
|---|
| 16 |  | 
|---|
| 17 |   /// \addtogroup flowalgs | 
|---|
| 18 |   /// @{                                                    | 
|---|
| 19 |  | 
|---|
| 20 |   ///%Preflow algorithms class. | 
|---|
| 21 |  | 
|---|
| 22 |   ///This class provides an implementation of the \e preflow \e | 
|---|
| 23 |   ///algorithm producing a flow of maximum value in a directed | 
|---|
| 24 |   ///graph. The preflow algorithms are the fastest max flow algorithms | 
|---|
| 25 |   ///up to now. The \e source node, the \e target node, the \e | 
|---|
| 26 |   ///capacity of the edges and the \e starting \e flow value of the | 
|---|
| 27 |   ///edges should be passed to the algorithm through the | 
|---|
| 28 |   ///constructor. It is possible to change these quantities using the | 
|---|
| 29 |   ///functions \ref setSource, \ref setTarget, \ref setCap and \ref | 
|---|
| 30 |   ///setFlow. | 
|---|
| 31 |   /// | 
|---|
| 32 |   ///After running \ref phase1() or \ref preflow(), the actual flow | 
|---|
| 33 |   ///value can be obtained by calling \ref flowValue(). The minimum | 
|---|
| 34 |   ///value cut can be written into a <tt>bool</tt> node map by | 
|---|
| 35 |   ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes | 
|---|
| 36 |   ///the inclusionwise minimum and maximum of the minimum value cuts, | 
|---|
| 37 |   ///resp.) | 
|---|
| 38 |   /// | 
|---|
| 39 |   ///\param Graph The directed graph type the algorithm runs on. | 
|---|
| 40 |   ///\param Num The number type of the capacities and the flow values. | 
|---|
| 41 |   ///\param CapMap The capacity map type. | 
|---|
| 42 |   ///\param FlowMap The flow map type. | 
|---|
| 43 |   /// | 
|---|
| 44 |   ///\author Jacint Szabo  | 
|---|
| 45 |   template <typename Graph, typename Num, | 
|---|
| 46 |             typename CapMap=typename Graph::template EdgeMap<Num>, | 
|---|
| 47 |             typename FlowMap=typename Graph::template EdgeMap<Num> > | 
|---|
| 48 |   class Preflow { | 
|---|
| 49 |   protected: | 
|---|
| 50 |     typedef typename Graph::Node Node; | 
|---|
| 51 |     typedef typename Graph::NodeIt NodeIt; | 
|---|
| 52 |     typedef typename Graph::EdgeIt EdgeIt; | 
|---|
| 53 |     typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 54 |     typedef typename Graph::InEdgeIt InEdgeIt; | 
|---|
| 55 |  | 
|---|
| 56 |     typedef typename Graph::template NodeMap<Node> NNMap; | 
|---|
| 57 |     typedef typename std::vector<Node> VecNode; | 
|---|
| 58 |  | 
|---|
| 59 |     const Graph* g; | 
|---|
| 60 |     Node s; | 
|---|
| 61 |     Node t; | 
|---|
| 62 |     const CapMap* capacity; | 
|---|
| 63 |     FlowMap* flow; | 
|---|
| 64 |     int n;      //the number of nodes of G | 
|---|
| 65 |      | 
|---|
| 66 |     typename Graph::template NodeMap<int> level;   | 
|---|
| 67 |     typename Graph::template NodeMap<Num> excess; | 
|---|
| 68 |  | 
|---|
| 69 |     // constants used for heuristics | 
|---|
| 70 |     static const int H0=20; | 
|---|
| 71 |     static const int H1=1; | 
|---|
| 72 |  | 
|---|
| 73 |     public: | 
|---|
| 74 |  | 
|---|
| 75 |     ///Indicates the property of the starting flow map. | 
|---|
| 76 |  | 
|---|
| 77 |     ///Indicates the property of the starting flow map. The meanings are as follows: | 
|---|
| 78 |     ///- \c ZERO_FLOW: constant zero flow | 
|---|
| 79 |     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to | 
|---|
| 80 |     ///the sum of the out-flows in every node except the \e source and | 
|---|
| 81 |     ///the \e target. | 
|---|
| 82 |     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at  | 
|---|
| 83 |     ///least the sum of the out-flows in every node except the \e source. | 
|---|
| 84 |     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be  | 
|---|
| 85 |     ///set to the constant zero flow in the beginning of the algorithm in this case. | 
|---|
| 86 |     /// | 
|---|
| 87 |     enum FlowEnum{ | 
|---|
| 88 |       NO_FLOW, | 
|---|
| 89 |       ZERO_FLOW, | 
|---|
| 90 |       GEN_FLOW, | 
|---|
| 91 |       PRE_FLOW | 
|---|
| 92 |     }; | 
|---|
| 93 |  | 
|---|
| 94 |     ///Indicates the state of the preflow algorithm. | 
|---|
| 95 |  | 
|---|
| 96 |     ///Indicates the state of the preflow algorithm. The meanings are as follows: | 
|---|
| 97 |     ///- \c AFTER_NOTHING: before running the algorithm or at an unspecified state. | 
|---|
| 98 |     ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1 | 
|---|
| 99 |     ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2() | 
|---|
| 100 |     /// | 
|---|
| 101 |     enum StatusEnum { | 
|---|
| 102 |       AFTER_NOTHING, | 
|---|
| 103 |       AFTER_PREFLOW_PHASE_1,       | 
|---|
| 104 |       AFTER_PREFLOW_PHASE_2 | 
|---|
| 105 |     }; | 
|---|
| 106 |      | 
|---|
| 107 |     protected:  | 
|---|
| 108 |       FlowEnum flow_prop; | 
|---|
| 109 |     StatusEnum status; // Do not needle this flag only if necessary. | 
|---|
| 110 |      | 
|---|
| 111 |   public:  | 
|---|
| 112 |     ///The constructor of the class. | 
|---|
| 113 |  | 
|---|
| 114 |     ///The constructor of the class.  | 
|---|
| 115 |     ///\param _G The directed graph the algorithm runs on.  | 
|---|
| 116 |     ///\param _s The source node. | 
|---|
| 117 |     ///\param _t The target node. | 
|---|
| 118 |     ///\param _capacity The capacity of the edges.  | 
|---|
| 119 |     ///\param _flow The flow of the edges.  | 
|---|
| 120 |     ///Except the graph, all of these parameters can be reset by | 
|---|
| 121 |     ///calling \ref setSource, \ref setTarget, \ref setCap and \ref | 
|---|
| 122 |     ///setFlow, resp. | 
|---|
| 123 |       Preflow(const Graph& _G, Node _s, Node _t,  | 
|---|
| 124 |               const CapMap& _capacity, FlowMap& _flow) : | 
|---|
| 125 |         g(&_G), s(_s), t(_t), capacity(&_capacity), | 
|---|
| 126 |         flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0),  | 
|---|
| 127 |         flow_prop(NO_FLOW), status(AFTER_NOTHING) { } | 
|---|
| 128 |  | 
|---|
| 129 |  | 
|---|
| 130 |                                                                                | 
|---|
| 131 |     ///Runs the preflow algorithm.   | 
|---|
| 132 |  | 
|---|
| 133 |     ///Runs the preflow algorithm. | 
|---|
| 134 |     /// | 
|---|
| 135 |     void run() { | 
|---|
| 136 |       phase1(flow_prop); | 
|---|
| 137 |       phase2(); | 
|---|
| 138 |     } | 
|---|
| 139 |      | 
|---|
| 140 |     ///Runs the preflow algorithm.   | 
|---|
| 141 |      | 
|---|
| 142 |     ///Runs the preflow algorithm.  | 
|---|
| 143 |     ///\pre The starting flow map must be | 
|---|
| 144 |     /// - a constant zero flow if \c fp is \c ZERO_FLOW, | 
|---|
| 145 |     /// - an arbitrary flow if \c fp is \c GEN_FLOW, | 
|---|
| 146 |     /// - an arbitrary preflow if \c fp is \c PRE_FLOW, | 
|---|
| 147 |     /// - any map if \c fp is NO_FLOW. | 
|---|
| 148 |     ///If the starting flow map is a flow or a preflow then  | 
|---|
| 149 |     ///the algorithm terminates faster. | 
|---|
| 150 |     void run(FlowEnum fp) { | 
|---|
| 151 |       flow_prop=fp; | 
|---|
| 152 |       run(); | 
|---|
| 153 |     } | 
|---|
| 154 |        | 
|---|
| 155 |     ///Runs the first phase of the preflow algorithm. | 
|---|
| 156 |  | 
|---|
| 157 |     ///The preflow algorithm consists of two phases, this method runs the | 
|---|
| 158 |     ///first phase. After the first phase the maximum flow value and a | 
|---|
| 159 |     ///minimum value cut can already be computed, though a maximum flow | 
|---|
| 160 |     ///is not yet obtained. So after calling this method \ref flowValue | 
|---|
| 161 |     ///and \ref minCut gives proper results. | 
|---|
| 162 |     ///\warning \ref minMinCut and \ref maxMinCut do not | 
|---|
| 163 |     ///give minimum value cuts unless calling \ref phase2. | 
|---|
| 164 |     ///\pre The starting flow must be | 
|---|
| 165 |     /// - a constant zero flow if \c fp is \c ZERO_FLOW, | 
|---|
| 166 |     /// - an arbitary flow if \c fp is \c GEN_FLOW, | 
|---|
| 167 |     /// - an arbitary preflow if \c fp is \c PRE_FLOW, | 
|---|
| 168 |     /// - any map if \c fp is NO_FLOW. | 
|---|
| 169 |     void phase1(FlowEnum fp) | 
|---|
| 170 |     { | 
|---|
| 171 |       flow_prop=fp; | 
|---|
| 172 |       phase1(); | 
|---|
| 173 |     } | 
|---|
| 174 |  | 
|---|
| 175 |      | 
|---|
| 176 |     ///Runs the first phase of the preflow algorithm. | 
|---|
| 177 |  | 
|---|
| 178 |     ///The preflow algorithm consists of two phases, this method runs the | 
|---|
| 179 |     ///first phase. After the first phase the maximum flow value and a | 
|---|
| 180 |     ///minimum value cut can already be computed, though a maximum flow | 
|---|
| 181 |     ///is not yet obtained. So after calling this method \ref flowValue | 
|---|
| 182 |     ///and \ref actMinCut gives proper results. | 
|---|
| 183 |     ///\warning \ref minCut, \ref minMinCut and \ref maxMinCut do not | 
|---|
| 184 |     ///give minimum value cuts unless calling \ref phase2. | 
|---|
| 185 |     void phase1() | 
|---|
| 186 |     { | 
|---|
| 187 |       int heur0=(int)(H0*n);  //time while running 'bound decrease' | 
|---|
| 188 |       int heur1=(int)(H1*n);  //time while running 'highest label' | 
|---|
| 189 |       int heur=heur1;         //starting time interval (#of relabels) | 
|---|
| 190 |       int numrelabel=0; | 
|---|
| 191 |  | 
|---|
| 192 |       bool what_heur=1; | 
|---|
| 193 |       //It is 0 in case 'bound decrease' and 1 in case 'highest label' | 
|---|
| 194 |  | 
|---|
| 195 |       bool end=false; | 
|---|
| 196 |       //Needed for 'bound decrease', true means no active  | 
|---|
| 197 |       //nodes are above bound b. | 
|---|
| 198 |  | 
|---|
| 199 |       int k=n-2;  //bound on the highest level under n containing a node | 
|---|
| 200 |       int b=k;    //bound on the highest level under n of an active node | 
|---|
| 201 |  | 
|---|
| 202 |       VecNode first(n, INVALID); | 
|---|
| 203 |       NNMap next(*g, INVALID); | 
|---|
| 204 |  | 
|---|
| 205 |       NNMap left(*g, INVALID); | 
|---|
| 206 |       NNMap right(*g, INVALID); | 
|---|
| 207 |       VecNode level_list(n,INVALID); | 
|---|
| 208 |       //List of the nodes in level i<n, set to n. | 
|---|
| 209 |  | 
|---|
| 210 |       preflowPreproc(first, next, level_list, left, right); | 
|---|
| 211 |  | 
|---|
| 212 |       //Push/relabel on the highest level active nodes. | 
|---|
| 213 |       while ( true ) { | 
|---|
| 214 |         if ( b == 0 ) { | 
|---|
| 215 |           if ( !what_heur && !end && k > 0 ) { | 
|---|
| 216 |             b=k; | 
|---|
| 217 |             end=true; | 
|---|
| 218 |           } else break; | 
|---|
| 219 |         } | 
|---|
| 220 |  | 
|---|
| 221 |         if ( first[b]==INVALID ) --b; | 
|---|
| 222 |         else { | 
|---|
| 223 |           end=false; | 
|---|
| 224 |           Node w=first[b]; | 
|---|
| 225 |           first[b]=next[w]; | 
|---|
| 226 |           int newlevel=push(w, next, first); | 
|---|
| 227 |           if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list,  | 
|---|
| 228 |                                        left, right, b, k, what_heur); | 
|---|
| 229 |  | 
|---|
| 230 |           ++numrelabel; | 
|---|
| 231 |           if ( numrelabel >= heur ) { | 
|---|
| 232 |             numrelabel=0; | 
|---|
| 233 |             if ( what_heur ) { | 
|---|
| 234 |               what_heur=0; | 
|---|
| 235 |               heur=heur0; | 
|---|
| 236 |               end=false; | 
|---|
| 237 |             } else { | 
|---|
| 238 |               what_heur=1; | 
|---|
| 239 |               heur=heur1; | 
|---|
| 240 |               b=k; | 
|---|
| 241 |             } | 
|---|
| 242 |           } | 
|---|
| 243 |         } | 
|---|
| 244 |       } | 
|---|
| 245 |       flow_prop=PRE_FLOW; | 
|---|
| 246 |       status=AFTER_PREFLOW_PHASE_1; | 
|---|
| 247 |     } | 
|---|
| 248 |     // Heuristics: | 
|---|
| 249 |     //   2 phase | 
|---|
| 250 |     //   gap | 
|---|
| 251 |     //   list 'level_list' on the nodes on level i implemented by hand | 
|---|
| 252 |     //   stack 'active' on the active nodes on level i       | 
|---|
| 253 |     //   runs heuristic 'highest label' for H1*n relabels | 
|---|
| 254 |     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' | 
|---|
| 255 |     //   Parameters H0 and H1 are initialized to 20 and 1. | 
|---|
| 256 |  | 
|---|
| 257 |  | 
|---|
| 258 |     ///Runs the second phase of the preflow algorithm. | 
|---|
| 259 |  | 
|---|
| 260 |     ///The preflow algorithm consists of two phases, this method runs | 
|---|
| 261 |     ///the second phase. After calling \ref phase1 and then | 
|---|
| 262 |     ///\ref phase2 the methods \ref flowValue, \ref minCut, | 
|---|
| 263 |     ///\ref minMinCut and \ref maxMinCut give proper results. | 
|---|
| 264 |     ///\pre \ref phase1 must be called before. | 
|---|
| 265 |     void phase2() | 
|---|
| 266 |     { | 
|---|
| 267 |  | 
|---|
| 268 |       int k=n-2;  //bound on the highest level under n containing a node | 
|---|
| 269 |       int b=k;    //bound on the highest level under n of an active node | 
|---|
| 270 |  | 
|---|
| 271 |      | 
|---|
| 272 |       VecNode first(n, INVALID); | 
|---|
| 273 |       NNMap next(*g, INVALID);  | 
|---|
| 274 |       level.set(s,0); | 
|---|
| 275 |       std::queue<Node> bfs_queue; | 
|---|
| 276 |       bfs_queue.push(s); | 
|---|
| 277 |  | 
|---|
| 278 |       while ( !bfs_queue.empty() ) { | 
|---|
| 279 |  | 
|---|
| 280 |         Node v=bfs_queue.front(); | 
|---|
| 281 |         bfs_queue.pop(); | 
|---|
| 282 |         int l=level[v]+1; | 
|---|
| 283 |  | 
|---|
| 284 |         for(InEdgeIt e(*g,v); e!=INVALID; ++e) { | 
|---|
| 285 |           if ( (*capacity)[e] <= (*flow)[e] ) continue; | 
|---|
| 286 |           Node u=g->tail(e); | 
|---|
| 287 |           if ( level[u] >= n ) { | 
|---|
| 288 |             bfs_queue.push(u); | 
|---|
| 289 |             level.set(u, l); | 
|---|
| 290 |             if ( excess[u] > 0 ) { | 
|---|
| 291 |               next.set(u,first[l]); | 
|---|
| 292 |               first[l]=u; | 
|---|
| 293 |             } | 
|---|
| 294 |           } | 
|---|
| 295 |         } | 
|---|
| 296 |  | 
|---|
| 297 |         for(OutEdgeIt e(*g,v); e!=INVALID; ++e) { | 
|---|
| 298 |           if ( 0 >= (*flow)[e] ) continue; | 
|---|
| 299 |           Node u=g->head(e); | 
|---|
| 300 |           if ( level[u] >= n ) { | 
|---|
| 301 |             bfs_queue.push(u); | 
|---|
| 302 |             level.set(u, l); | 
|---|
| 303 |             if ( excess[u] > 0 ) { | 
|---|
| 304 |               next.set(u,first[l]); | 
|---|
| 305 |               first[l]=u; | 
|---|
| 306 |             } | 
|---|
| 307 |           } | 
|---|
| 308 |         } | 
|---|
| 309 |       } | 
|---|
| 310 |       b=n-2; | 
|---|
| 311 |  | 
|---|
| 312 |       while ( true ) { | 
|---|
| 313 |  | 
|---|
| 314 |         if ( b == 0 ) break; | 
|---|
| 315 |         if ( first[b]==INVALID ) --b; | 
|---|
| 316 |         else { | 
|---|
| 317 |           Node w=first[b]; | 
|---|
| 318 |           first[b]=next[w]; | 
|---|
| 319 |           int newlevel=push(w,next, first); | 
|---|
| 320 |            | 
|---|
| 321 |           //relabel | 
|---|
| 322 |           if ( excess[w] > 0 ) { | 
|---|
| 323 |             level.set(w,++newlevel); | 
|---|
| 324 |             next.set(w,first[newlevel]); | 
|---|
| 325 |             first[newlevel]=w; | 
|---|
| 326 |             b=newlevel; | 
|---|
| 327 |           } | 
|---|
| 328 |         }  | 
|---|
| 329 |       } // while(true) | 
|---|
| 330 |       flow_prop=GEN_FLOW; | 
|---|
| 331 |       status=AFTER_PREFLOW_PHASE_2; | 
|---|
| 332 |     } | 
|---|
| 333 |  | 
|---|
| 334 |     /// Returns the value of the maximum flow. | 
|---|
| 335 |  | 
|---|
| 336 |     /// Returns the value of the maximum flow by returning the excess | 
|---|
| 337 |     /// of the target node \ref t. This value equals to the value of | 
|---|
| 338 |     /// the maximum flow already after running \ref phase1. | 
|---|
| 339 |     Num flowValue() const { | 
|---|
| 340 |       return excess[t]; | 
|---|
| 341 |     } | 
|---|
| 342 |  | 
|---|
| 343 |  | 
|---|
| 344 |     ///Returns a minimum value cut. | 
|---|
| 345 |  | 
|---|
| 346 |     ///Sets \c M to the characteristic vector of a minimum value | 
|---|
| 347 |     ///cut. This method can be called both after running \ref | 
|---|
| 348 |     ///phase1 and \ref phase2. It is much faster after | 
|---|
| 349 |     ///\ref phase1.  \pre M should be a bool-valued node-map. \pre | 
|---|
| 350 |     ///If \ref mincut is called after \ref phase2 then M should | 
|---|
| 351 |     ///be initialized to false. | 
|---|
| 352 |     template<typename _CutMap> | 
|---|
| 353 |     void minCut(_CutMap& M) const { | 
|---|
| 354 |       switch ( status ) { | 
|---|
| 355 |         case AFTER_PREFLOW_PHASE_1: | 
|---|
| 356 |         for(NodeIt v(*g); v!=INVALID; ++v) { | 
|---|
| 357 |           if (level[v] < n) { | 
|---|
| 358 |             M.set(v, false); | 
|---|
| 359 |           } else { | 
|---|
| 360 |             M.set(v, true); | 
|---|
| 361 |           } | 
|---|
| 362 |         } | 
|---|
| 363 |         break; | 
|---|
| 364 |         case AFTER_PREFLOW_PHASE_2: | 
|---|
| 365 |         minMinCut(M); | 
|---|
| 366 |         break; | 
|---|
| 367 |         case AFTER_NOTHING: | 
|---|
| 368 |         break; | 
|---|
| 369 |       } | 
|---|
| 370 |     } | 
|---|
| 371 |  | 
|---|
| 372 |     ///Returns the inclusionwise minimum of the minimum value cuts. | 
|---|
| 373 |  | 
|---|
| 374 |     ///Sets \c M to the characteristic vector of the minimum value cut | 
|---|
| 375 |     ///which is inclusionwise minimum. It is computed by processing a | 
|---|
| 376 |     ///bfs from the source node \c s in the residual graph.  \pre M | 
|---|
| 377 |     ///should be a node map of bools initialized to false.  \pre \ref | 
|---|
| 378 |     ///phase2 should already be run. | 
|---|
| 379 |     template<typename _CutMap> | 
|---|
| 380 |     void minMinCut(_CutMap& M) const { | 
|---|
| 381 |  | 
|---|
| 382 |       std::queue<Node> queue; | 
|---|
| 383 |       M.set(s,true); | 
|---|
| 384 |       queue.push(s); | 
|---|
| 385 |        | 
|---|
| 386 |       while (!queue.empty()) { | 
|---|
| 387 |         Node w=queue.front(); | 
|---|
| 388 |         queue.pop(); | 
|---|
| 389 |          | 
|---|
| 390 |         for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
| 391 |           Node v=g->head(e); | 
|---|
| 392 |           if (!M[v] && (*flow)[e] < (*capacity)[e] ) { | 
|---|
| 393 |             queue.push(v); | 
|---|
| 394 |             M.set(v, true); | 
|---|
| 395 |           } | 
|---|
| 396 |         } | 
|---|
| 397 |          | 
|---|
| 398 |         for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
| 399 |           Node v=g->tail(e); | 
|---|
| 400 |           if (!M[v] && (*flow)[e] > 0 ) { | 
|---|
| 401 |             queue.push(v); | 
|---|
| 402 |             M.set(v, true); | 
|---|
| 403 |           } | 
|---|
| 404 |         } | 
|---|
| 405 |       } | 
|---|
| 406 |     } | 
|---|
| 407 |      | 
|---|
| 408 |     ///Returns the inclusionwise maximum of the minimum value cuts. | 
|---|
| 409 |  | 
|---|
| 410 |     ///Sets \c M to the characteristic vector of the minimum value cut | 
|---|
| 411 |     ///which is inclusionwise maximum. It is computed by processing a | 
|---|
| 412 |     ///backward bfs from the target node \c t in the residual graph. | 
|---|
| 413 |     ///\pre \ref phase2() or preflow() should already be run. | 
|---|
| 414 |     template<typename _CutMap> | 
|---|
| 415 |     void maxMinCut(_CutMap& M) const { | 
|---|
| 416 |  | 
|---|
| 417 |       for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true); | 
|---|
| 418 |  | 
|---|
| 419 |       std::queue<Node> queue; | 
|---|
| 420 |  | 
|---|
| 421 |       M.set(t,false); | 
|---|
| 422 |       queue.push(t); | 
|---|
| 423 |  | 
|---|
| 424 |       while (!queue.empty()) { | 
|---|
| 425 |         Node w=queue.front(); | 
|---|
| 426 |         queue.pop(); | 
|---|
| 427 |  | 
|---|
| 428 |         for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
| 429 |           Node v=g->tail(e); | 
|---|
| 430 |           if (M[v] && (*flow)[e] < (*capacity)[e] ) { | 
|---|
| 431 |             queue.push(v); | 
|---|
| 432 |             M.set(v, false); | 
|---|
| 433 |           } | 
|---|
| 434 |         } | 
|---|
| 435 |  | 
|---|
| 436 |         for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
| 437 |           Node v=g->head(e); | 
|---|
| 438 |           if (M[v] && (*flow)[e] > 0 ) { | 
|---|
| 439 |             queue.push(v); | 
|---|
| 440 |             M.set(v, false); | 
|---|
| 441 |           } | 
|---|
| 442 |         } | 
|---|
| 443 |       } | 
|---|
| 444 |     } | 
|---|
| 445 |  | 
|---|
| 446 |     ///Sets the source node to \c _s. | 
|---|
| 447 |  | 
|---|
| 448 |     ///Sets the source node to \c _s. | 
|---|
| 449 |     ///  | 
|---|
| 450 |     void setSource(Node _s) {  | 
|---|
| 451 |       s=_s;  | 
|---|
| 452 |       if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW; | 
|---|
| 453 |       status=AFTER_NOTHING;  | 
|---|
| 454 |     } | 
|---|
| 455 |  | 
|---|
| 456 |     ///Sets the target node to \c _t. | 
|---|
| 457 |  | 
|---|
| 458 |     ///Sets the target node to \c _t. | 
|---|
| 459 |     /// | 
|---|
| 460 |     void setTarget(Node _t) {  | 
|---|
| 461 |       t=_t;  | 
|---|
| 462 |       if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW; | 
|---|
| 463 |       status=AFTER_NOTHING;  | 
|---|
| 464 |     } | 
|---|
| 465 |  | 
|---|
| 466 |     /// Sets the edge map of the capacities to _cap. | 
|---|
| 467 |  | 
|---|
| 468 |     /// Sets the edge map of the capacities to _cap. | 
|---|
| 469 |     ///  | 
|---|
| 470 |     void setCap(const CapMap& _cap) {  | 
|---|
| 471 |       capacity=&_cap;  | 
|---|
| 472 |       status=AFTER_NOTHING;  | 
|---|
| 473 |     } | 
|---|
| 474 |  | 
|---|
| 475 |     /// Sets the edge map of the flows to _flow. | 
|---|
| 476 |  | 
|---|
| 477 |     /// Sets the edge map of the flows to _flow. | 
|---|
| 478 |     ///  | 
|---|
| 479 |     void setFlow(FlowMap& _flow) {  | 
|---|
| 480 |       flow=&_flow;  | 
|---|
| 481 |       flow_prop=NO_FLOW; | 
|---|
| 482 |       status=AFTER_NOTHING;  | 
|---|
| 483 |     } | 
|---|
| 484 |  | 
|---|
| 485 |  | 
|---|
| 486 |   private: | 
|---|
| 487 |  | 
|---|
| 488 |     int push(Node w, NNMap& next, VecNode& first) { | 
|---|
| 489 |  | 
|---|
| 490 |       int lev=level[w]; | 
|---|
| 491 |       Num exc=excess[w]; | 
|---|
| 492 |       int newlevel=n;       //bound on the next level of w | 
|---|
| 493 |  | 
|---|
| 494 |       for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
| 495 |         if ( (*flow)[e] >= (*capacity)[e] ) continue; | 
|---|
| 496 |         Node v=g->head(e); | 
|---|
| 497 |  | 
|---|
| 498 |         if( lev > level[v] ) { //Push is allowed now | 
|---|
| 499 |            | 
|---|
| 500 |           if ( excess[v]<=0 && v!=t && v!=s ) { | 
|---|
| 501 |             next.set(v,first[level[v]]); | 
|---|
| 502 |             first[level[v]]=v; | 
|---|
| 503 |           } | 
|---|
| 504 |  | 
|---|
| 505 |           Num cap=(*capacity)[e]; | 
|---|
| 506 |           Num flo=(*flow)[e]; | 
|---|
| 507 |           Num remcap=cap-flo; | 
|---|
| 508 |            | 
|---|
| 509 |           if ( remcap >= exc ) { //A nonsaturating push. | 
|---|
| 510 |              | 
|---|
| 511 |             flow->set(e, flo+exc); | 
|---|
| 512 |             excess.set(v, excess[v]+exc); | 
|---|
| 513 |             exc=0; | 
|---|
| 514 |             break; | 
|---|
| 515 |  | 
|---|
| 516 |           } else { //A saturating push. | 
|---|
| 517 |             flow->set(e, cap); | 
|---|
| 518 |             excess.set(v, excess[v]+remcap); | 
|---|
| 519 |             exc-=remcap; | 
|---|
| 520 |           } | 
|---|
| 521 |         } else if ( newlevel > level[v] ) newlevel = level[v]; | 
|---|
| 522 |       } //for out edges wv | 
|---|
| 523 |  | 
|---|
| 524 |       if ( exc > 0 ) { | 
|---|
| 525 |         for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
| 526 |            | 
|---|
| 527 |           if( (*flow)[e] <= 0 ) continue; | 
|---|
| 528 |           Node v=g->tail(e); | 
|---|
| 529 |  | 
|---|
| 530 |           if( lev > level[v] ) { //Push is allowed now | 
|---|
| 531 |  | 
|---|
| 532 |             if ( excess[v]<=0 && v!=t && v!=s ) { | 
|---|
| 533 |               next.set(v,first[level[v]]); | 
|---|
| 534 |               first[level[v]]=v; | 
|---|
| 535 |             } | 
|---|
| 536 |  | 
|---|
| 537 |             Num flo=(*flow)[e]; | 
|---|
| 538 |  | 
|---|
| 539 |             if ( flo >= exc ) { //A nonsaturating push. | 
|---|
| 540 |  | 
|---|
| 541 |               flow->set(e, flo-exc); | 
|---|
| 542 |               excess.set(v, excess[v]+exc); | 
|---|
| 543 |               exc=0; | 
|---|
| 544 |               break; | 
|---|
| 545 |             } else {  //A saturating push. | 
|---|
| 546 |  | 
|---|
| 547 |               excess.set(v, excess[v]+flo); | 
|---|
| 548 |               exc-=flo; | 
|---|
| 549 |               flow->set(e,0); | 
|---|
| 550 |             } | 
|---|
| 551 |           } else if ( newlevel > level[v] ) newlevel = level[v]; | 
|---|
| 552 |         } //for in edges vw | 
|---|
| 553 |  | 
|---|
| 554 |       } // if w still has excess after the out edge for cycle | 
|---|
| 555 |  | 
|---|
| 556 |       excess.set(w, exc); | 
|---|
| 557 |        | 
|---|
| 558 |       return newlevel; | 
|---|
| 559 |     } | 
|---|
| 560 |      | 
|---|
| 561 |      | 
|---|
| 562 |      | 
|---|
| 563 |     void preflowPreproc(VecNode& first, NNMap& next,  | 
|---|
| 564 |                         VecNode& level_list, NNMap& left, NNMap& right) | 
|---|
| 565 |     { | 
|---|
| 566 |       for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n); | 
|---|
| 567 |       std::queue<Node> bfs_queue; | 
|---|
| 568 |        | 
|---|
| 569 |       if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) { | 
|---|
| 570 |         //Reverse_bfs from t in the residual graph, | 
|---|
| 571 |         //to find the starting level. | 
|---|
| 572 |         level.set(t,0); | 
|---|
| 573 |         bfs_queue.push(t); | 
|---|
| 574 |          | 
|---|
| 575 |         while ( !bfs_queue.empty() ) { | 
|---|
| 576 |            | 
|---|
| 577 |           Node v=bfs_queue.front(); | 
|---|
| 578 |           bfs_queue.pop(); | 
|---|
| 579 |           int l=level[v]+1; | 
|---|
| 580 |            | 
|---|
| 581 |           for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { | 
|---|
| 582 |             if ( (*capacity)[e] <= (*flow)[e] ) continue; | 
|---|
| 583 |             Node w=g->tail(e); | 
|---|
| 584 |             if ( level[w] == n && w != s ) { | 
|---|
| 585 |               bfs_queue.push(w); | 
|---|
| 586 |               Node z=level_list[l]; | 
|---|
| 587 |               if ( z!=INVALID ) left.set(z,w); | 
|---|
| 588 |               right.set(w,z); | 
|---|
| 589 |               level_list[l]=w; | 
|---|
| 590 |               level.set(w, l); | 
|---|
| 591 |             } | 
|---|
| 592 |           } | 
|---|
| 593 |            | 
|---|
| 594 |           for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) { | 
|---|
| 595 |             if ( 0 >= (*flow)[e] ) continue; | 
|---|
| 596 |             Node w=g->head(e); | 
|---|
| 597 |             if ( level[w] == n && w != s ) { | 
|---|
| 598 |               bfs_queue.push(w); | 
|---|
| 599 |               Node z=level_list[l]; | 
|---|
| 600 |               if ( z!=INVALID ) left.set(z,w); | 
|---|
| 601 |               right.set(w,z); | 
|---|
| 602 |               level_list[l]=w; | 
|---|
| 603 |               level.set(w, l); | 
|---|
| 604 |             } | 
|---|
| 605 |           } | 
|---|
| 606 |         } //while | 
|---|
| 607 |       } //if | 
|---|
| 608 |  | 
|---|
| 609 |  | 
|---|
| 610 |       switch (flow_prop) { | 
|---|
| 611 |         case NO_FLOW:   | 
|---|
| 612 |         for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0); | 
|---|
| 613 |         case ZERO_FLOW: | 
|---|
| 614 |         for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); | 
|---|
| 615 |          | 
|---|
| 616 |         //Reverse_bfs from t, to find the starting level. | 
|---|
| 617 |         level.set(t,0); | 
|---|
| 618 |         bfs_queue.push(t); | 
|---|
| 619 |          | 
|---|
| 620 |         while ( !bfs_queue.empty() ) { | 
|---|
| 621 |            | 
|---|
| 622 |           Node v=bfs_queue.front(); | 
|---|
| 623 |           bfs_queue.pop(); | 
|---|
| 624 |           int l=level[v]+1; | 
|---|
| 625 |            | 
|---|
| 626 |           for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { | 
|---|
| 627 |             Node w=g->tail(e); | 
|---|
| 628 |             if ( level[w] == n && w != s ) { | 
|---|
| 629 |               bfs_queue.push(w); | 
|---|
| 630 |               Node z=level_list[l]; | 
|---|
| 631 |               if ( z!=INVALID ) left.set(z,w); | 
|---|
| 632 |               right.set(w,z); | 
|---|
| 633 |               level_list[l]=w; | 
|---|
| 634 |               level.set(w, l); | 
|---|
| 635 |             } | 
|---|
| 636 |           } | 
|---|
| 637 |         } | 
|---|
| 638 |          | 
|---|
| 639 |         //the starting flow | 
|---|
| 640 |         for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) { | 
|---|
| 641 |           Num c=(*capacity)[e]; | 
|---|
| 642 |           if ( c <= 0 ) continue; | 
|---|
| 643 |           Node w=g->head(e); | 
|---|
| 644 |           if ( level[w] < n ) { | 
|---|
| 645 |             if ( excess[w] <= 0 && w!=t ) { //putting into the stack | 
|---|
| 646 |               next.set(w,first[level[w]]); | 
|---|
| 647 |               first[level[w]]=w; | 
|---|
| 648 |             } | 
|---|
| 649 |             flow->set(e, c); | 
|---|
| 650 |             excess.set(w, excess[w]+c); | 
|---|
| 651 |           } | 
|---|
| 652 |         } | 
|---|
| 653 |         break; | 
|---|
| 654 |  | 
|---|
| 655 |         case GEN_FLOW: | 
|---|
| 656 |         for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); | 
|---|
| 657 |         { | 
|---|
| 658 |           Num exc=0; | 
|---|
| 659 |           for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e]; | 
|---|
| 660 |           for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e]; | 
|---|
| 661 |           excess.set(t,exc); | 
|---|
| 662 |         } | 
|---|
| 663 |  | 
|---|
| 664 |         //the starting flow | 
|---|
| 665 |         for(OutEdgeIt e(*g,s); e!=INVALID; ++e) { | 
|---|
| 666 |           Num rem=(*capacity)[e]-(*flow)[e]; | 
|---|
| 667 |           if ( rem <= 0 ) continue; | 
|---|
| 668 |           Node w=g->head(e); | 
|---|
| 669 |           if ( level[w] < n ) { | 
|---|
| 670 |             if ( excess[w] <= 0 && w!=t ) { //putting into the stack | 
|---|
| 671 |               next.set(w,first[level[w]]); | 
|---|
| 672 |               first[level[w]]=w; | 
|---|
| 673 |             }    | 
|---|
| 674 |             flow->set(e, (*capacity)[e]); | 
|---|
| 675 |             excess.set(w, excess[w]+rem); | 
|---|
| 676 |           } | 
|---|
| 677 |         } | 
|---|
| 678 |          | 
|---|
| 679 |         for(InEdgeIt e(*g,s); e!=INVALID; ++e) { | 
|---|
| 680 |           if ( (*flow)[e] <= 0 ) continue; | 
|---|
| 681 |           Node w=g->tail(e); | 
|---|
| 682 |           if ( level[w] < n ) { | 
|---|
| 683 |             if ( excess[w] <= 0 && w!=t ) { | 
|---|
| 684 |               next.set(w,first[level[w]]); | 
|---|
| 685 |               first[level[w]]=w; | 
|---|
| 686 |             }   | 
|---|
| 687 |             excess.set(w, excess[w]+(*flow)[e]); | 
|---|
| 688 |             flow->set(e, 0); | 
|---|
| 689 |           } | 
|---|
| 690 |         } | 
|---|
| 691 |         break; | 
|---|
| 692 |  | 
|---|
| 693 |         case PRE_FLOW:   | 
|---|
| 694 |         //the starting flow | 
|---|
| 695 |         for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) { | 
|---|
| 696 |           Num rem=(*capacity)[e]-(*flow)[e]; | 
|---|
| 697 |           if ( rem <= 0 ) continue; | 
|---|
| 698 |           Node w=g->head(e); | 
|---|
| 699 |           if ( level[w] < n ) flow->set(e, (*capacity)[e]); | 
|---|
| 700 |         } | 
|---|
| 701 |          | 
|---|
| 702 |         for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) { | 
|---|
| 703 |           if ( (*flow)[e] <= 0 ) continue; | 
|---|
| 704 |           Node w=g->tail(e); | 
|---|
| 705 |           if ( level[w] < n ) flow->set(e, 0); | 
|---|
| 706 |         } | 
|---|
| 707 |          | 
|---|
| 708 |         //computing the excess | 
|---|
| 709 |         for(NodeIt w(*g); w!=INVALID; ++w) { | 
|---|
| 710 |           Num exc=0; | 
|---|
| 711 |           for(InEdgeIt e(*g,w); e!=INVALID; ++e) exc+=(*flow)[e]; | 
|---|
| 712 |           for(OutEdgeIt e(*g,w); e!=INVALID; ++e) exc-=(*flow)[e]; | 
|---|
| 713 |           excess.set(w,exc); | 
|---|
| 714 |            | 
|---|
| 715 |           //putting the active nodes into the stack | 
|---|
| 716 |           int lev=level[w]; | 
|---|
| 717 |             if ( exc > 0 && lev < n && Node(w) != t ) { | 
|---|
| 718 |               next.set(w,first[lev]); | 
|---|
| 719 |               first[lev]=w; | 
|---|
| 720 |             } | 
|---|
| 721 |         } | 
|---|
| 722 |         break; | 
|---|
| 723 |       } //switch | 
|---|
| 724 |     } //preflowPreproc | 
|---|
| 725 |  | 
|---|
| 726 |  | 
|---|
| 727 |     void relabel(Node w, int newlevel, VecNode& first, NNMap& next,  | 
|---|
| 728 |                  VecNode& level_list, NNMap& left, | 
|---|
| 729 |                  NNMap& right, int& b, int& k, bool what_heur ) | 
|---|
| 730 |     { | 
|---|
| 731 |  | 
|---|
| 732 |       int lev=level[w]; | 
|---|
| 733 |  | 
|---|
| 734 |       Node right_n=right[w]; | 
|---|
| 735 |       Node left_n=left[w]; | 
|---|
| 736 |  | 
|---|
| 737 |       //unlacing starts | 
|---|
| 738 |       if ( right_n!=INVALID ) { | 
|---|
| 739 |         if ( left_n!=INVALID ) { | 
|---|
| 740 |           right.set(left_n, right_n); | 
|---|
| 741 |           left.set(right_n, left_n); | 
|---|
| 742 |         } else { | 
|---|
| 743 |           level_list[lev]=right_n; | 
|---|
| 744 |           left.set(right_n, INVALID); | 
|---|
| 745 |         } | 
|---|
| 746 |       } else { | 
|---|
| 747 |         if ( left_n!=INVALID ) { | 
|---|
| 748 |           right.set(left_n, INVALID); | 
|---|
| 749 |         } else { | 
|---|
| 750 |           level_list[lev]=INVALID; | 
|---|
| 751 |         } | 
|---|
| 752 |       } | 
|---|
| 753 |       //unlacing ends | 
|---|
| 754 |  | 
|---|
| 755 |       if ( level_list[lev]==INVALID ) { | 
|---|
| 756 |  | 
|---|
| 757 |         //gapping starts | 
|---|
| 758 |         for (int i=lev; i!=k ; ) { | 
|---|
| 759 |           Node v=level_list[++i]; | 
|---|
| 760 |           while ( v!=INVALID ) { | 
|---|
| 761 |             level.set(v,n); | 
|---|
| 762 |             v=right[v]; | 
|---|
| 763 |           } | 
|---|
| 764 |           level_list[i]=INVALID; | 
|---|
| 765 |           if ( !what_heur ) first[i]=INVALID; | 
|---|
| 766 |         } | 
|---|
| 767 |  | 
|---|
| 768 |         level.set(w,n); | 
|---|
| 769 |         b=lev-1; | 
|---|
| 770 |         k=b; | 
|---|
| 771 |         //gapping ends | 
|---|
| 772 |  | 
|---|
| 773 |       } else { | 
|---|
| 774 |  | 
|---|
| 775 |         if ( newlevel == n ) level.set(w,n); | 
|---|
| 776 |         else { | 
|---|
| 777 |           level.set(w,++newlevel); | 
|---|
| 778 |           next.set(w,first[newlevel]); | 
|---|
| 779 |           first[newlevel]=w; | 
|---|
| 780 |           if ( what_heur ) b=newlevel; | 
|---|
| 781 |           if ( k < newlevel ) ++k;      //now k=newlevel | 
|---|
| 782 |           Node z=level_list[newlevel]; | 
|---|
| 783 |           if ( z!=INVALID ) left.set(z,w); | 
|---|
| 784 |           right.set(w,z); | 
|---|
| 785 |           left.set(w,INVALID); | 
|---|
| 786 |           level_list[newlevel]=w; | 
|---|
| 787 |         } | 
|---|
| 788 |       } | 
|---|
| 789 |     } //relabel | 
|---|
| 790 |  | 
|---|
| 791 |   };  | 
|---|
| 792 | } //namespace hugo | 
|---|
| 793 |  | 
|---|
| 794 | #endif //HUGO_PREFLOW_H | 
|---|
| 795 |  | 
|---|
| 796 |  | 
|---|
| 797 |  | 
|---|
| 798 |  | 
|---|