| 1 | // -*- C++ -*- | 
|---|
| 2 | #ifndef HUGO_DIJKSTRA_H | 
|---|
| 3 | #define HUGO_DIJKSTRA_H | 
|---|
| 4 |  | 
|---|
| 5 | ///\file | 
|---|
| 6 | ///\brief Dijkstra algorithm. | 
|---|
| 7 |  | 
|---|
| 8 | #include <bin_heap.h> | 
|---|
| 9 | #include <invalid.h> | 
|---|
| 10 |  | 
|---|
| 11 | namespace hugo { | 
|---|
| 12 |  | 
|---|
| 13 | ///%Dijkstra algorithm class. | 
|---|
| 14 |  | 
|---|
| 15 | ///This class provides an efficient implementation of %Dijkstra algorithm. | 
|---|
| 16 | ///The edge lengths are passed to the algorithm using a | 
|---|
| 17 | ///\ref ReadMapSkeleton "readable map", | 
|---|
| 18 | ///so it is easy to change it to any kind of length. | 
|---|
| 19 | /// | 
|---|
| 20 | ///The type of the length is determined by the \c ValueType of the length map. | 
|---|
| 21 | /// | 
|---|
| 22 | ///It is also possible to change the underlying priority heap. | 
|---|
| 23 | /// | 
|---|
| 24 | ///\param Graph The graph type the algorithm runs on. | 
|---|
| 25 | ///\param LengthMap This read-only | 
|---|
| 26 | ///EdgeMap | 
|---|
| 27 | ///determines the | 
|---|
| 28 | ///lengths of the edges. It is read once for each edge, so the map | 
|---|
| 29 | ///may involve in relatively time consuming process to compute the edge | 
|---|
| 30 | ///length if it is necessary. The default map type is | 
|---|
| 31 | ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>" | 
|---|
| 32 | ///\param Heap The heap type used by the %Dijkstra | 
|---|
| 33 | ///algorithm. The default | 
|---|
| 34 | ///is using \ref BinHeap "binary heap". | 
|---|
| 35 |  | 
|---|
| 36 | #ifdef DOXYGEN | 
|---|
| 37 | template <typename Graph, | 
|---|
| 38 | typename LengthMap, | 
|---|
| 39 | typename Heap> | 
|---|
| 40 | #else | 
|---|
| 41 | template <typename Graph, | 
|---|
| 42 | typename LengthMap=typename Graph::EdgeMap<int>, | 
|---|
| 43 | template <class,class,class> class Heap = BinHeap > | 
|---|
| 44 | #endif | 
|---|
| 45 | class Dijkstra{ | 
|---|
| 46 | public: | 
|---|
| 47 | typedef typename Graph::Node Node; | 
|---|
| 48 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 49 | typedef typename Graph::Edge Edge; | 
|---|
| 50 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 51 |  | 
|---|
| 52 | typedef typename LengthMap::ValueType ValueType; | 
|---|
| 53 | typedef typename Graph::NodeMap<Edge> PredMap; | 
|---|
| 54 | typedef typename Graph::NodeMap<Node> PredNodeMap; | 
|---|
| 55 | typedef typename Graph::NodeMap<ValueType> DistMap; | 
|---|
| 56 |  | 
|---|
| 57 | private: | 
|---|
| 58 | const Graph& G; | 
|---|
| 59 | const LengthMap& length; | 
|---|
| 60 | PredMap predecessor; | 
|---|
| 61 | PredNodeMap pred_node; | 
|---|
| 62 | DistMap distance; | 
|---|
| 63 |  | 
|---|
| 64 | public : | 
|---|
| 65 |  | 
|---|
| 66 | Dijkstra(Graph& _G, LengthMap& _length) : | 
|---|
| 67 | G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { } | 
|---|
| 68 |  | 
|---|
| 69 | void run(Node s); | 
|---|
| 70 |  | 
|---|
| 71 | ///The distance of a node from the root. | 
|---|
| 72 |  | 
|---|
| 73 | ///Returns the distance of a node from the root. | 
|---|
| 74 | ///\pre \ref run() must be called before using this function. | 
|---|
| 75 | ///\warning If node \c v in unreachable from the root the return value | 
|---|
| 76 | ///of this funcion is undefined. | 
|---|
| 77 | ValueType dist(Node v) const { return distance[v]; } | 
|---|
| 78 |  | 
|---|
| 79 | ///Returns the previous edge of the shortest path tree. | 
|---|
| 80 |  | 
|---|
| 81 | ///For a node \c v it returns the previous edge of the shortest path tree, | 
|---|
| 82 | ///i.e. it returns the last edge from a shortest path from the root to \c | 
|---|
| 83 | ///v. It is INVALID if \c v is unreachable from the root or if \c v=s. The | 
|---|
| 84 | ///shortest path tree used here is equal to the shortest path tree used in | 
|---|
| 85 | ///\ref predNode(Node v).  \pre \ref run() must be called before using | 
|---|
| 86 | ///this function. | 
|---|
| 87 | Edge pred(Node v) const { return predecessor[v]; } | 
|---|
| 88 |  | 
|---|
| 89 | ///Returns the previous node of the shortest path tree. | 
|---|
| 90 |  | 
|---|
| 91 | ///For a node \c v it returns the previous node of the shortest path tree, | 
|---|
| 92 | ///i.e. it returns the last but one node from a shortest path from the | 
|---|
| 93 | ///root to \c /v. It is INVALID if \c v is unreachable from the root or if | 
|---|
| 94 | ///\c v=s. The shortest path tree used here is equal to the shortest path | 
|---|
| 95 | ///tree used in \ref pred(Node v).  \pre \ref run() must be called before | 
|---|
| 96 | ///using this function. | 
|---|
| 97 | Node predNode(Node v) const { return pred_node[v]; } | 
|---|
| 98 |  | 
|---|
| 99 | ///Returns a reference to the NodeMap of distances. | 
|---|
| 100 |  | 
|---|
| 101 | ///Returns a reference to the NodeMap of distances. \pre \ref run() must | 
|---|
| 102 | ///be called before using this function. | 
|---|
| 103 | const DistMap &distMap() const { return distance;} | 
|---|
| 104 |  | 
|---|
| 105 | ///Returns a reference to the shortest path tree map. | 
|---|
| 106 |  | 
|---|
| 107 | ///Returns a reference to the NodeMap of the edges of the | 
|---|
| 108 | ///shortest path tree. | 
|---|
| 109 | ///\pre \ref run() must be called before using this function. | 
|---|
| 110 | const PredMap &predMap() const { return predecessor;} | 
|---|
| 111 |  | 
|---|
| 112 | ///Returns a reference to the map of nodes of shortest paths. | 
|---|
| 113 |  | 
|---|
| 114 | ///Returns a reference to the NodeMap of the last but one nodes of the | 
|---|
| 115 | ///shortest path tree. | 
|---|
| 116 | ///\pre \ref run() must be called before using this function. | 
|---|
| 117 | const PredNodeMap &predNodeMap() const { return pred_node;} | 
|---|
| 118 |  | 
|---|
| 119 | ///Checks if a node is reachable from the root. | 
|---|
| 120 |  | 
|---|
| 121 | ///Returns \c true if \c v is reachable from the root. | 
|---|
| 122 | ///\warning the root node is reported to be unreached! | 
|---|
| 123 | ///\todo Is this what we want? | 
|---|
| 124 | ///\pre \ref run() must be called before using this function. | 
|---|
| 125 | /// | 
|---|
| 126 | bool reached(Node v) { return G.valid(predecessor[v]); } | 
|---|
| 127 |  | 
|---|
| 128 | }; | 
|---|
| 129 |  | 
|---|
| 130 |  | 
|---|
| 131 | // ********************************************************************** | 
|---|
| 132 | //  IMPLEMENTATIONS | 
|---|
| 133 | // ********************************************************************** | 
|---|
| 134 |  | 
|---|
| 135 | ///Runs %Dijkstra algorithm from node the root. | 
|---|
| 136 |  | 
|---|
| 137 | ///This method runs the %Dijkstra algorithm from a root node \c s | 
|---|
| 138 | ///in order to | 
|---|
| 139 | ///compute the | 
|---|
| 140 | ///shortest path to each node. The algorithm computes | 
|---|
| 141 | ///- The shortest path tree. | 
|---|
| 142 | ///- The distance of each node from the root. | 
|---|
| 143 | template <typename Graph, typename LengthMap, | 
|---|
| 144 | template<class,class,class> class Heap > | 
|---|
| 145 | void Dijkstra<Graph,LengthMap,Heap>::run(Node s) { | 
|---|
| 146 |  | 
|---|
| 147 | NodeIt u; | 
|---|
| 148 | for ( G.first(u) ; G.valid(u) ; G.next(u) ) { | 
|---|
| 149 | predecessor.set(u,INVALID); | 
|---|
| 150 | pred_node.set(u,INVALID); | 
|---|
| 151 | } | 
|---|
| 152 |  | 
|---|
| 153 | typename Graph::NodeMap<int> heap_map(G,-1); | 
|---|
| 154 |  | 
|---|
| 155 | Heap<Node,ValueType,typename Graph::NodeMap<int> > heap(heap_map); | 
|---|
| 156 |  | 
|---|
| 157 | heap.push(s,0); | 
|---|
| 158 |  | 
|---|
| 159 | while ( !heap.empty() ) { | 
|---|
| 160 |  | 
|---|
| 161 | Node v=heap.top(); | 
|---|
| 162 | ValueType oldvalue=heap[v]; | 
|---|
| 163 | heap.pop(); | 
|---|
| 164 | distance.set(v, oldvalue); | 
|---|
| 165 |  | 
|---|
| 166 | { //FIXME this bracket is for e to be local | 
|---|
| 167 | OutEdgeIt e; | 
|---|
| 168 | for(G.first(e, v); | 
|---|
| 169 | G.valid(e); G.next(e)) { | 
|---|
| 170 | Node w=G.head(e); | 
|---|
| 171 |  | 
|---|
| 172 | switch(heap.state(w)) { | 
|---|
| 173 | case heap.PRE_HEAP: | 
|---|
| 174 | heap.push(w,oldvalue+length[e]); | 
|---|
| 175 | predecessor.set(w,e); | 
|---|
| 176 | pred_node.set(w,v); | 
|---|
| 177 | break; | 
|---|
| 178 | case heap.IN_HEAP: | 
|---|
| 179 | if ( oldvalue+length[e] < heap[w] ) { | 
|---|
| 180 | heap.decrease(w, oldvalue+length[e]); | 
|---|
| 181 | predecessor.set(w,e); | 
|---|
| 182 | pred_node.set(w,v); | 
|---|
| 183 | } | 
|---|
| 184 | break; | 
|---|
| 185 | case heap.POST_HEAP: | 
|---|
| 186 | break; | 
|---|
| 187 | } | 
|---|
| 188 | } | 
|---|
| 189 | } //FIXME tis bracket | 
|---|
| 190 | } | 
|---|
| 191 | } | 
|---|
| 192 |  | 
|---|
| 193 | } //END OF NAMESPACE HUGO | 
|---|
| 194 |  | 
|---|
| 195 | #endif | 
|---|
| 196 |  | 
|---|
| 197 |  | 
|---|