/* -*- C++ -*- * src/lemon/concept/graph.h - Part of LEMON, a generic C++ optimization library * * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_CONCEPT_SYM_GRAPH_H #define LEMON_CONCEPT_SYM_GRAPH_H ///\ingroup concept ///\file ///\brief Declaration of SymGraph. #include #include #include namespace lemon { namespace concept { /// \addtogroup concept /// @{ /// An empty static graph class. /// This class provides all the common features of a symmetric /// graph structure, however completely without implementations and /// real data structures behind the interface. /// All graph algorithms should compile with this class, but it will not /// run properly, of course. /// /// It can be used for checking the interface compatibility, /// or it can serve as a skeleton of a new symmetric graph structure. /// /// Also, you will find here the full documentation of a certain graph /// feature, the documentation of a real symmetric graph imlementation /// like @ref SymListGraph or /// @ref lemon::SymSmartGraph will just refer to this structure. class StaticSymGraph { public: /// Defalult constructor. /// Defalult constructor. /// StaticSymGraph() { } ///Copy consructor. // ///\todo It is not clear, what we expect from a copy constructor. // ///E.g. How to assign the nodes/edges to each other? What about maps? // StaticGraph(const StaticGraph& g) { } /// The base type of node iterators, /// or in other words, the trivial node iterator. /// This is the base type of each node iterator, /// thus each kind of node iterator converts to this. /// More precisely each kind of node iterator should be inherited /// from the trivial node iterator. class Node { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. Node() { } /// Copy constructor. /// Copy constructor. /// Node(const Node&) { } /// Invalid constructor \& conversion. /// This constructor initializes the iterator to be invalid. /// \sa Invalid for more details. Node(Invalid) { } /// Equality operator /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(Node) const { return true; } /// Inequality operator /// \sa operator==(Node n) /// bool operator!=(Node) const { return true; } ///Comparison operator. ///This is a strict ordering between the nodes. /// ///This ordering can be different from the order in which NodeIt ///goes through the nodes. ///\todo Possibly we don't need it. bool operator<(Node) const { return true; } }; /// This iterator goes through each node. /// This iterator goes through each node. /// Its usage is quite simple, for example you can count the number /// of nodes in graph \c g of type \c Graph like this: /// \code /// int count=0; /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; /// \endcode class NodeIt : public Node { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. NodeIt() { } /// Copy constructor. /// Copy constructor. /// NodeIt(const NodeIt&) { } /// Invalid constructor \& conversion. /// Initialize the iterator to be invalid. /// \sa Invalid for more details. NodeIt(Invalid) { } /// Sets the iterator to the first node. /// Sets the iterator to the first node of \c g. /// NodeIt(const StaticSymGraph& g) { } /// Node -> NodeIt conversion. /// Sets the iterator to the node of \c g pointed by the trivial /// iterator n. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. NodeIt(const StaticSymGraph& g, const Node& n) { } /// Next node. /// Assign the iterator to the next node. /// NodeIt& operator++() { return *this; } }; /// The base type of the symmetric edge iterators. /// The base type of the symmetric edge iterators. /// class SymEdge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. SymEdge() { } /// Copy constructor. /// Copy constructor. /// SymEdge(const SymEdge&) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// SymEdge(Invalid) { } /// Equality operator /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(SymEdge) const { return true; } /// Inequality operator /// \sa operator==(Node n) /// bool operator!=(SymEdge) const { return true; } ///Comparison operator. ///This is a strict ordering between the nodes. /// ///This ordering can be different from the order in which NodeIt ///goes through the nodes. ///\todo Possibly we don't need it. bool operator<(SymEdge) const { return true; } }; /// The base type of the edge iterators. /// The base type of the edge iterators. /// class Edge : public SymEdge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. Edge() { } /// Copy constructor. /// Copy constructor. /// Edge(const Edge&) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// Edge(Invalid) { } /// Equality operator /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(Edge) const { return true; } /// Inequality operator /// \sa operator==(Node n) /// bool operator!=(Edge) const { return true; } ///Comparison operator. ///This is a strict ordering between the nodes. /// ///This ordering can be different from the order in which NodeIt ///goes through the nodes. ///\todo Possibly we don't need it. bool operator<(Edge) const { return true; } }; /// This iterator goes trough the outgoing edges of a node. /// This iterator goes trough the \e outgoing edges of a certain node /// of a graph. /// Its usage is quite simple, for example you can count the number /// of outgoing edges of a node \c n /// in graph \c g of type \c Graph as follows. /// \code /// int count=0; /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count; /// \endcode class OutEdgeIt : public Edge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. OutEdgeIt() { } /// Copy constructor. /// Copy constructor. /// OutEdgeIt(const OutEdgeIt&) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// OutEdgeIt(Invalid) { } /// This constructor sets the iterator to first outgoing edge. /// This constructor set the iterator to the first outgoing edge of /// node ///@param n the node ///@param g the graph OutEdgeIt(const StaticSymGraph& g, const Node& n) { } /// Edge -> OutEdgeIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. OutEdgeIt(const StaticSymGraph& g, const Edge& e) { } ///Next outgoing edge /// Assign the iterator to the next /// outgoing edge of the corresponding node. OutEdgeIt& operator++() { return *this; } }; /// This iterator goes trough the incoming edges of a node. /// This iterator goes trough the \e incoming edges of a certain node /// of a graph. /// Its usage is quite simple, for example you can count the number /// of outgoing edges of a node \c n /// in graph \c g of type \c Graph as follows. /// \code /// int count=0; /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count; /// \endcode class InEdgeIt : public Edge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. InEdgeIt() { } /// Copy constructor. /// Copy constructor. /// InEdgeIt(const InEdgeIt&) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// InEdgeIt(Invalid) { } /// This constructor sets the iterator to first incoming edge. /// This constructor set the iterator to the first incoming edge of /// node ///@param n the node ///@param g the graph InEdgeIt(const StaticSymGraph& g, const Node& n) { } /// Edge -> InEdgeIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. InEdgeIt(const StaticSymGraph& g, const Edge& n) { } /// Next incoming edge /// Assign the iterator to the next inedge of the corresponding node. /// InEdgeIt& operator++() { return *this; } }; /// This iterator goes through each symmetric edge. /// This iterator goes through each symmetric edge of a graph. /// Its usage is quite simple, for example you can count the number /// of symmetric edges in a graph \c g of type \c Graph as follows: /// \code /// int count=0; /// for(Graph::SymEdgeIt e(g); e!=INVALID; ++e) ++count; /// \endcode class SymEdgeIt : public SymEdge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. SymEdgeIt() { } /// Copy constructor. /// Copy constructor. /// SymEdgeIt(const SymEdgeIt&) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// SymEdgeIt(Invalid) { } /// This constructor sets the iterator to first edge. /// This constructor set the iterator to the first edge of /// node ///@param g the graph SymEdgeIt(const StaticSymGraph& g) { } /// Edge -> EdgeIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. SymEdgeIt(const StaticSymGraph&, const SymEdge&) { } ///Next edge /// Assign the iterator to the next /// edge of the corresponding node. SymEdgeIt& operator++() { return *this; } }; /// This iterator goes through each edge. /// This iterator goes through each edge of a graph. /// Its usage is quite simple, for example you can count the number /// of edges in a graph \c g of type \c Graph as follows: /// \code /// int count=0; /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; /// \endcode class EdgeIt : public Edge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. EdgeIt() { } /// Copy constructor. /// Copy constructor. /// EdgeIt(const EdgeIt&) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// EdgeIt(Invalid) { } /// This constructor sets the iterator to first edge. /// This constructor set the iterator to the first edge of /// node ///@param g the graph EdgeIt(const StaticSymGraph& g) { } /// Edge -> EdgeIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. EdgeIt(const StaticSymGraph&, const Edge&) { } ///Next edge /// Assign the iterator to the next /// edge of the corresponding node. EdgeIt& operator++() { return *this; } }; /// First node of the graph. /// \retval i the first node. /// \return the first node. /// NodeIt& first(NodeIt& i) const { return i; } /// The first incoming edge. /// The first incoming edge. /// InEdgeIt& first(InEdgeIt &i, Node) const { return i; } /// The first outgoing edge. /// The first outgoing edge. /// OutEdgeIt& first(OutEdgeIt& i, Node) const { return i; } /// The first edge of the Graph. /// The first edge of the Graph. /// EdgeIt& first(EdgeIt& i) const { return i; } /// The first symmetric edge of the Graph. /// The first symmetric edge of the Graph. /// SymEdgeIt& first(SymEdgeIt& i) const { return i; } ///Gives back the target node of an edge. ///Gives back the target node of an edge. /// Node target(Edge) const { return INVALID; } ///Gives back the source node of an edge. ///Gives back the source node of an edge. /// Node source(Edge) const { return INVALID; } ///Gives back the first node of an symmetric edge. ///Gives back the first node of an symmetric edge. /// Node target(SymEdge) const { return INVALID; } ///Gives back the second node of an symmetric edge. ///Gives back the second node of an symmetric edge. /// Node source(SymEdge) const { return INVALID; } ///Gives back the \e id of a node. ///\warning Not all graph structures provide this feature. /// ///\todo Should each graph provide \c id? int id(const Node&) const { return 0; } ///Gives back the \e id of an edge. ///\warning Not all graph structures provide this feature. /// ///\todo Should each graph provide \c id? int id(const Edge&) const { return 0; } ///\warning Not all graph structures provide this feature. /// ///\todo Should each graph provide \c id? int id(const SymEdge&) const { return 0; } ///\e ///\todo Should it be in the concept? /// int nodeNum() const { return 0; } ///\e ///\todo Should it be in the concept? /// int edgeNum() const { return 0; } ///\todo Should it be in the concept? /// int symEdgeNum() const { return 0; } /// Gives back the forward directed edge of the symmetric edge. Edge forward(SymEdge) const {return INVALID;} /// Gives back the backward directed edge of the symmetric edge. Edge backward(SymEdge) const {return INVALID;}; /// Gives back the opposite of the edge. Edge opposite(Edge) const {return INVALID;} ///Reference map of the nodes to type \c T. /// \ingroup concept ///Reference map of the nodes to type \c T. /// \sa Reference /// \warning Making maps that can handle bool type (NodeMap) /// needs some extra attention! template class NodeMap : public ReferenceMap< Node, T > { public: ///\e NodeMap(const StaticSymGraph&) { } ///\e NodeMap(const StaticSymGraph&, T) { } ///Copy constructor template NodeMap(const NodeMap&) { } ///Assignment operator template NodeMap& operator=(const NodeMap&) { return *this; } }; ///Reference map of the edges to type \c T. /// \ingroup concept ///Reference map of the edges to type \c T. /// \sa Reference /// \warning Making maps that can handle bool type (EdgeMap) /// needs some extra attention! template class EdgeMap : public ReferenceMap { public: ///\e EdgeMap(const StaticSymGraph&) { } ///\e EdgeMap(const StaticSymGraph&, T) { } ///Copy constructor template EdgeMap(const EdgeMap&) { } ///Assignment operator template EdgeMap &operator=(const EdgeMap&) { return *this; } }; ///Reference map of the edges to type \c T. /// \ingroup concept ///Reference map of the symmetric edges to type \c T. /// \sa Reference /// \warning Making maps that can handle bool type (EdgeMap) /// needs some extra attention! template class SymEdgeMap : public ReferenceMap { public: ///\e SymEdgeMap(const StaticSymGraph&) { } ///\e SymEdgeMap(const StaticSymGraph&, T) { } ///Copy constructor template SymEdgeMap(const SymEdgeMap&) { } ///Assignment operator template SymEdgeMap &operator=(const SymEdgeMap&) { return *this; } }; }; /// An empty non-static graph class. /// This class provides everything that \ref StaticGraph /// with additional functionality which enables to build a /// graph from scratch. class ExtendableSymGraph : public StaticSymGraph { public: /// Defalult constructor. /// Defalult constructor. /// ExtendableSymGraph() { } ///Add a new node to the graph. /// \return the new node. /// Node addNode() { return INVALID; } ///Add a new edge to the graph. ///Add a new symmetric edge to the graph with source node \c t ///and target node \c h. ///\return the new edge. SymEdge addEdge(Node h, Node t) { return INVALID; } /// Resets the graph. /// This function deletes all edges and nodes of the graph. /// It also frees the memory allocated to store them. /// \todo It might belong to \ref ErasableGraph. void clear() { } }; /// An empty erasable graph class. /// This class is an extension of \ref ExtendableGraph. It also makes it /// possible to erase edges or nodes. class ErasableSymGraph : public ExtendableSymGraph { public: /// Defalult constructor. /// Defalult constructor. /// ErasableSymGraph() { } /// Deletes a node. /// Deletes node \c n node. /// void erase(Node n) { } /// Deletes an edge. /// Deletes edge \c e edge. /// void erase(SymEdge e) { } }; // @} } //namespace concept } //namespace lemon #endif // LEMON_CONCEPT_GRAPH_H