/* -*- C++ -*- * src/lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library * * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Combinatorial Optimization Research Group, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_DIJKSTRA_H #define LEMON_DIJKSTRA_H ///\ingroup flowalgs ///\file ///\brief Dijkstra algorithm. #include #include #include #include #include namespace lemon { ///Default traits class of Dijkstra class. ///Default traits class of Dijkstra class. ///\param GR Graph type. ///\param LM Type of length map. template struct DijkstraDefaultTraits { ///The graph type the algorithm runs on. typedef GR Graph; ///The type of the map that stores the edge lengths. ///The type of the map that stores the edge lengths. ///It must meet the \ref concept::ReadMap "ReadMap" concept. typedef LM LengthMap; //The type of the length of the edges. typedef typename LM::Value Value; ///The heap type used by Dijkstra algorithm. ///The heap type used by Dijkstra algorithm. /// ///\sa BinHeap ///\sa Dijkstra typedef BinHeap, std::less > Heap; ///\brief The type of the map that stores the last ///edges of the shortest paths. /// ///The type of the map that stores the last ///edges of the shortest paths. ///It must meet the \ref concept::WriteMap "WriteMap" concept. /// typedef typename Graph::template NodeMap PredMap; ///Instantiates a PredMap. ///This function instantiates a \ref PredMap. ///\param G is the graph, to which we would like to define the PredMap. ///\todo The graph alone may be insufficient for the initialization static PredMap *createPredMap(const GR &G) { return new PredMap(G); } ///\brief The type of the map that stores the last but one ///nodes of the shortest paths. /// ///The type of the map that stores the last but one ///nodes of the shortest paths. ///It must meet the \ref concept::WriteMap "WriteMap" concept. /// typedef NullMap PredNodeMap; ///Instantiates a PredNodeMap. ///This function instantiates a \ref PredNodeMap. ///\param G is the graph, to which ///we would like to define the \ref PredNodeMap static PredNodeMap *createPredNodeMap(const GR &G) { return new PredNodeMap(); } ///The type of the map that stores whether a nodes is reached. ///The type of the map that stores whether a nodes is reached. ///It must meet the \ref concept::WriteMap "WriteMap" concept. ///By default it is a NullMap. ///\todo If it is set to a real map, Dijkstra::reached() should read this. ///\todo named parameter to set this type, function to read and write. typedef NullMap ReachedMap; ///Instantiates a ReachedMap. ///This function instantiates a \ref ReachedMap. ///\param G is the graph, to which ///we would like to define the \ref ReachedMap static ReachedMap *createReachedMap(const GR &G) { return new ReachedMap(); } ///The type of the map that stores the dists of the nodes. ///The type of the map that stores the dists of the nodes. ///It must meet the \ref concept::WriteMap "WriteMap" concept. /// typedef typename Graph::template NodeMap DistMap; ///Instantiates a DistMap. ///This function instantiates a \ref DistMap. ///\param G is the graph, to which we would like to define the \ref DistMap static DistMap *createDistMap(const GR &G) { return new DistMap(G); } }; ///%Dijkstra algorithm class. /// \ingroup flowalgs ///This class provides an efficient implementation of %Dijkstra algorithm. ///The edge lengths are passed to the algorithm using a ///\ref concept::ReadMap "ReadMap", ///so it is easy to change it to any kind of length. /// ///The type of the length is determined by the ///\ref concept::ReadMap::Value "Value" of the length map. /// ///It is also possible to change the underlying priority heap. /// ///\param GR The graph type the algorithm runs on. The default value is ///\ref ListGraph. The value of GR is not used directly by Dijkstra, it ///is only passed to \ref DijkstraDefaultTraits. ///\param LM This read-only ///EdgeMap ///determines the ///lengths of the edges. It is read once for each edge, so the map ///may involve in relatively time consuming process to compute the edge ///length if it is necessary. The default map type is ///\ref concept::StaticGraph::EdgeMap "Graph::EdgeMap". ///The value of LM is not used directly by Dijkstra, it ///is only passed to \ref DijkstraDefaultTraits. ///\param TR Traits class to set various data types used by the algorithm. ///The default traits class is ///\ref DijkstraDefaultTraits "DijkstraDefaultTraits". ///See \ref DijkstraDefaultTraits for the documentation of ///a Dijkstra traits class. /// ///\author Jacint Szabo and Alpar Juttner ///\todo A compare object would be nice. #ifdef DOXYGEN template #else template , typename TR=DijkstraDefaultTraits > #endif class Dijkstra { public: /** * \brief \ref Exception for uninitialized parameters. * * This error represents problems in the initialization * of the parameters of the algorithms. */ class UninitializedParameter : public lemon::UninitializedParameter { public: virtual const char* exceptionName() const { return "lemon::Dijsktra::UninitializedParameter"; } }; typedef TR Traits; ///The type of the underlying graph. typedef typename TR::Graph Graph; ///\e typedef typename Graph::Node Node; ///\e typedef typename Graph::NodeIt NodeIt; ///\e typedef typename Graph::Edge Edge; ///\e typedef typename Graph::OutEdgeIt OutEdgeIt; ///The type of the length of the edges. typedef typename TR::LengthMap::Value Value; ///The type of the map that stores the edge lengths. typedef typename TR::LengthMap LengthMap; ///\brief The type of the map that stores the last ///edges of the shortest paths. typedef typename TR::PredMap PredMap; ///\brief The type of the map that stores the last but one ///nodes of the shortest paths. typedef typename TR::PredNodeMap PredNodeMap; ///The type of the map indicating if a node is reached. typedef typename TR::ReachedMap ReachedMap; ///The type of the map that stores the dists of the nodes. typedef typename TR::DistMap DistMap; ///The heap type used by the dijkstra algorithm. typedef typename TR::Heap Heap; private: /// Pointer to the underlying graph. const Graph *G; /// Pointer to the length map const LengthMap *length; ///Pointer to the map of predecessors edges. PredMap *_pred; ///Indicates if \ref _pred is locally allocated (\c true) or not. bool local_pred; ///Pointer to the map of predecessors nodes. PredNodeMap *_predNode; ///Indicates if \ref _predNode is locally allocated (\c true) or not. bool local_predNode; ///Pointer to the map of distances. DistMap *_dist; ///Indicates if \ref _dist is locally allocated (\c true) or not. bool local_dist; ///Pointer to the map of reached status of the nodes. ReachedMap *_reached; ///Indicates if \ref _reached is locally allocated (\c true) or not. bool local_reached; ///The source node of the last execution. Node source; ///Creates the maps if necessary. ///\todo Error if \c G or are \c NULL. What about \c length? ///\todo Better memory allocation (instead of new). void create_maps() { if(!_pred) { local_pred = true; _pred = Traits::createPredMap(*G); } if(!_predNode) { local_predNode = true; _predNode = Traits::createPredNodeMap(*G); } if(!_dist) { local_dist = true; _dist = Traits::createDistMap(*G); } if(!_reached) { local_reached = true; _reached = Traits::createReachedMap(*G); } } public : ///\name Named template parameters ///@{ template struct DefPredMapTraits : public Traits { typedef T PredMap; static PredMap *createPredMap(const Graph &G) { throw UninitializedParameter(); } }; ///\ref named-templ-param "Named parameter" for setting PredMap type ///\ref named-templ-param "Named parameter" for setting PredMap type /// template class DefPredMap : public Dijkstra< Graph, LengthMap, DefPredMapTraits > { }; template struct DefPredNodeMapTraits : public Traits { typedef T PredNodeMap; static PredNodeMap *createPredNodeMap(const Graph &G) { throw UninitializedParameter(); } }; ///\ref named-templ-param "Named parameter" for setting PredNodeMap type ///\ref named-templ-param "Named parameter" for setting PredNodeMap type /// template class DefPredNodeMap : public Dijkstra< Graph, LengthMap, DefPredNodeMapTraits > { }; template struct DefDistMapTraits : public Traits { typedef T DistMap; static DistMap *createDistMap(const Graph &G) { throw UninitializedParameter(); } }; ///\ref named-templ-param "Named parameter" for setting DistMap type ///\ref named-templ-param "Named parameter" for setting DistMap type /// template class DefDistMap : public Dijkstra< Graph, LengthMap, DefDistMapTraits > { }; template struct DefReachedMapTraits : public Traits { typedef T ReachedMap; static ReachedMap *createReachedMap(const Graph &G) { throw UninitializedParameter(); } }; ///\ref named-templ-param "Named parameter" for setting ReachedMap type ///\ref named-templ-param "Named parameter" for setting ReachedMap type /// template class DefReachedMap : public Dijkstra< Graph, LengthMap, DefReachedMapTraits > { }; struct DefGraphReachedMapTraits : public Traits { typedef typename Graph::template NodeMap ReachedMap; static ReachedMap *createReachedMap(const Graph &G) { return new ReachedMap(G); } }; ///\brief \ref named-templ-param "Named parameter" ///for setting the ReachedMap type to be Graph::NodeMap. /// ///\ref named-templ-param "Named parameter" ///for setting the ReachedMap type to be Graph::NodeMap. ///If you don't set it explicitely, it will be automatically allocated. template class DefReachedMapToBeDefaultMap : public Dijkstra< Graph, LengthMap, DefGraphReachedMapTraits> { }; ///@} private: typename Graph::template NodeMap _heap_map; Heap _heap; public: ///Constructor. ///\param _G the graph the algorithm will run on. ///\param _length the length map used by the algorithm. Dijkstra(const Graph& _G, const LengthMap& _length) : G(&_G), length(&_length), _pred(NULL), local_pred(false), _predNode(NULL), local_predNode(false), _dist(NULL), local_dist(false), _reached(NULL), local_reached(false), _heap_map(*G,-1),_heap(_heap_map) { } ///Destructor. ~Dijkstra() { if(local_pred) delete _pred; if(local_predNode) delete _predNode; if(local_dist) delete _dist; if(local_reached) delete _reached; } ///Sets the length map. ///Sets the length map. ///\return (*this) Dijkstra &lengthMap(const LengthMap &m) { length = &m; return *this; } ///Sets the map storing the predecessor edges. ///Sets the map storing the predecessor edges. ///If you don't use this function before calling \ref run(), ///it will allocate one. The destuctor deallocates this ///automatically allocated map, of course. ///\return (*this) Dijkstra &predMap(PredMap &m) { if(local_pred) { delete _pred; local_pred=false; } _pred = &m; return *this; } ///Sets the map storing the predecessor nodes. ///Sets the map storing the predecessor nodes. ///If you don't use this function before calling \ref run(), ///it will allocate one. The destuctor deallocates this ///automatically allocated map, of course. ///\return (*this) Dijkstra &predNodeMap(PredNodeMap &m) { if(local_predNode) { delete _predNode; local_predNode=false; } _predNode = &m; return *this; } ///Sets the map storing the distances calculated by the algorithm. ///Sets the map storing the distances calculated by the algorithm. ///If you don't use this function before calling \ref run(), ///it will allocate one. The destuctor deallocates this ///automatically allocated map, of course. ///\return (*this) Dijkstra &distMap(DistMap &m) { if(local_dist) { delete _dist; local_dist=false; } _dist = &m; return *this; } private: void finalizeNodeData(Node v,Value dst) { _reached->set(v,true); _dist->set(v, dst); if((*_pred)[v]!=INVALID) _predNode->set(v,G->source((*_pred)[v])); ///\todo What to do? } public: ///\name Excetution control ///The simplest way to execute the algorithm is to use ///one of the member functions called \c run(...). ///\n ///It you need more control on the execution, ///first you must call \ref init(), then you can add several source nodes ///with \ref addSource(). Finally \ref start() will perform the actual path ///computation. ///@{ ///Initializes the internal data structures. ///Initializes the internal data structures. /// ///\todo _heap_map's type could also be in the traits class. void init() { create_maps(); for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { _pred->set(u,INVALID); _predNode->set(u,INVALID); ///\todo *_reached is not set to false. _heap_map.set(u,Heap::PRE_HEAP); } } ///Adds a new source node. ///Adds a new source node to the priority heap. /// ///The optional second parameter is the initial distance of the node. /// ///It checks if the node has already been added to the heap and ///It is pushed to the heap only if either it was not in the heap ///or the shortest path found till then is longer then \c dst. void addSource(Node s,Value dst=0) { source = s; if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst); else if(_heap[s]set(s,INVALID); } } ///Processes the next node in the priority heap ///Processes the next node in the priority heap. /// ///\warning The priority heap must not be empty! void processNextNode() { Node v=_heap.top(); Value oldvalue=_heap[v]; _heap.pop(); finalizeNodeData(v,oldvalue); for(OutEdgeIt e(*G,v); e!=INVALID; ++e) { Node w=G->target(e); switch(_heap.state(w)) { case Heap::PRE_HEAP: _heap.push(w,oldvalue+(*length)[e]); _pred->set(w,e); // _predNode->set(w,v); break; case Heap::IN_HEAP: if ( oldvalue+(*length)[e] < _heap[w] ) { _heap.decrease(w, oldvalue+(*length)[e]); _pred->set(w,e); // _predNode->set(w,v); } break; case Heap::POST_HEAP: break; } } } ///Returns \c false if there are nodes to be processed in the priority heap ///Returns \c false if there are nodes to be processed in the priority heap /// bool emptyHeap() { return _heap.empty(); } ///Returns the number of the nodes to be processed in the priority heap ///Returns the number of the nodes to be processed in the priority heap /// int heapSize() { return _heap.size(); } ///Executes the algorithm. ///Executes the algorithm. /// ///\pre init() must be called and at least one node should be added ///with addSource() before using this function. /// ///This method runs the %Dijkstra algorithm from the root node(s) ///in order to ///compute the ///shortest path to each node. The algorithm computes ///- The shortest path tree. ///- The distance of each node from the root(s). /// void start() { while ( !_heap.empty() ) processNextNode(); } ///Executes the algorithm until \c dest is reached. ///Executes the algorithm until \c dest is reached. /// ///\pre init() must be called and at least one node should be added ///with addSource() before using this function. /// ///This method runs the %Dijkstra algorithm from the root node(s) ///in order to ///compute the ///shortest path to \c dest. The algorithm computes ///- The shortest path to \c dest. ///- The distance of \c dest from the root(s). /// void start(Node dest) { while ( !_heap.empty() && _heap.top()!=dest ) processNextNode(); if ( _heap.top()==dest ) finalizeNodeData(_heap.top()); } ///Executes the algorithm until a condition is met. ///Executes the algorithm until a condition is met. /// ///\pre init() must be called and at least one node should be added ///with addSource() before using this function. /// ///\param nm must be a bool (or convertible) node map. The algorithm ///will stop when it reaches a node \c v with nm[v]==true. template void start(const NM &nm) { while ( !_heap.empty() && !nm[_heap.top()] ) processNextNode(); if ( !_heap.empty() ) finalizeNodeData(_heap.top()); } ///Runs %Dijkstra algorithm from node \c s. ///This method runs the %Dijkstra algorithm from a root node \c s ///in order to ///compute the ///shortest path to each node. The algorithm computes ///- The shortest path tree. ///- The distance of each node from the root. /// ///\note d.run(s) is just a shortcut of the following code. ///\code /// d.init(); /// d.addSource(s); /// d.start(); ///\endcode void run(Node s) { init(); addSource(s); start(); } ///Finds the shortest path between \c s and \c t. ///Finds the shortest path between \c s and \c t. /// ///\return The length of the shortest s---t path if there exists one, ///0 otherwise. ///\note Apart from the return value, d.run(s) is ///just a shortcut of the following code. ///\code /// d.init(); /// d.addSource(s); /// d.start(t); ///\endcode Value run(Node s,Node t) { init(); addSource(s); start(t); return (*_pred)[t]==INVALID?0:(*_dist)[t]; } ///@} ///\name Query Functions ///The result of the %Dijkstra algorithm can be obtained using these ///functions.\n ///Before the use of these functions, ///either run() or start() must be called. ///@{ ///The distance of a node from the root. ///Returns the distance of a node from the root. ///\pre \ref run() must be called before using this function. ///\warning If node \c v in unreachable from the root the return value ///of this funcion is undefined. Value dist(Node v) const { return (*_dist)[v]; } ///Returns the 'previous edge' of the shortest path tree. ///For a node \c v it returns the 'previous edge' of the shortest path tree, ///i.e. it returns the last edge of a shortest path from the root to \c ///v. It is \ref INVALID ///if \c v is unreachable from the root or if \c v=s. The ///shortest path tree used here is equal to the shortest path tree used in ///\ref predNode(Node v). \pre \ref run() must be called before using ///this function. ///\todo predEdge could be a better name. Edge pred(Node v) const { return (*_pred)[v]; } ///Returns the 'previous node' of the shortest path tree. ///For a node \c v it returns the 'previous node' of the shortest path tree, ///i.e. it returns the last but one node from a shortest path from the ///root to \c /v. It is INVALID if \c v is unreachable from the root or if ///\c v=s. The shortest path tree used here is equal to the shortest path ///tree used in \ref pred(Node v). \pre \ref run() must be called before ///using this function. Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: G->source((*_pred)[v]); } ///Returns a reference to the NodeMap of distances. ///Returns a reference to the NodeMap of distances. \pre \ref run() must ///be called before using this function. const DistMap &distMap() const { return *_dist;} ///Returns a reference to the shortest path tree map. ///Returns a reference to the NodeMap of the edges of the ///shortest path tree. ///\pre \ref run() must be called before using this function. const PredMap &predMap() const { return *_pred;} ///Returns a reference to the map of nodes of shortest paths. ///Returns a reference to the NodeMap of the last but one nodes of the ///shortest path tree. ///\pre \ref run() must be called before using this function. const PredNodeMap &predNodeMap() const { return *_predNode;} ///Checks if a node is reachable from the root. ///Returns \c true if \c v is reachable from the root. ///\warning If the algorithm is started from multiple nodes, ///this function may give false result for the source nodes. ///\pre \ref run() must be called before using this function. /// bool reached(Node v) { return v==source || (*_pred)[v]!=INVALID; } ///@} }; /// Default traits used by \ref DijkstraWizard /// To make it easier to use Dijkstra algorithm ///we have created a wizard class. /// This \ref DijkstraWizard class needs default traits, ///as well as the \ref Dijkstra class. /// The \ref DijkstraWizardBase is a class to be the default traits of the /// \ref DijkstraWizard class. template class DijkstraWizardBase : public DijkstraDefaultTraits { typedef DijkstraDefaultTraits Base; protected: /// Type of the nodes in the graph. typedef typename Base::Graph::Node Node; /// Pointer to the underlying graph. void *_g; /// Pointer to the length map void *_length; ///Pointer to the map of predecessors edges. void *_pred; ///Pointer to the map of predecessors nodes. void *_predNode; ///Pointer to the map of distances. void *_dist; ///Pointer to the source node. Node _source; public: /// Constructor. /// This constructor does not require parameters, therefore it initiates /// all of the attributes to default values (0, INVALID). DijkstraWizardBase() : _g(0), _length(0), _pred(0), _predNode(0), _dist(0), _source(INVALID) {} /// Constructor. /// This constructor requires some parameters, /// listed in the parameters list. /// Others are initiated to 0. /// \param g is the initial value of \ref _g /// \param l is the initial value of \ref _length /// \param s is the initial value of \ref _source DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) : _g((void *)&g), _length((void *)&l), _pred(0), _predNode(0), _dist(0), _source(s) {} }; /// A class to make easier the usage of Dijkstra algorithm /// \ingroup flowalgs /// This class is created to make it easier to use Dijkstra algorithm. /// It uses the functions and features of the plain \ref Dijkstra, /// but it is much simpler to use it. /// /// Simplicity means that the way to change the types defined /// in the traits class is based on functions that returns the new class /// and not on templatable built-in classes. /// When using the plain \ref Dijkstra /// the new class with the modified type comes from /// the original class by using the :: /// operator. In the case of \ref DijkstraWizard only /// a function have to be called and it will /// return the needed class. /// /// It does not have own \ref run method. When its \ref run method is called /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run /// method of it. template class DijkstraWizard : public TR { typedef TR Base; ///The type of the underlying graph. typedef typename TR::Graph Graph; //\e typedef typename Graph::Node Node; //\e typedef typename Graph::NodeIt NodeIt; //\e typedef typename Graph::Edge Edge; //\e typedef typename Graph::OutEdgeIt OutEdgeIt; ///The type of the map that stores the edge lengths. typedef typename TR::LengthMap LengthMap; ///The type of the length of the edges. typedef typename LengthMap::Value Value; ///\brief The type of the map that stores the last ///edges of the shortest paths. typedef typename TR::PredMap PredMap; ///\brief The type of the map that stores the last but one ///nodes of the shortest paths. typedef typename TR::PredNodeMap PredNodeMap; ///The type of the map that stores the dists of the nodes. typedef typename TR::DistMap DistMap; ///The heap type used by the dijkstra algorithm. typedef typename TR::Heap Heap; public: /// Constructor. DijkstraWizard() : TR() {} /// Constructor that requires parameters. /// Constructor that requires parameters. /// These parameters will be the default values for the traits class. DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) : TR(g,l,s) {} ///Copy constructor DijkstraWizard(const TR &b) : TR(b) {} ~DijkstraWizard() {} ///Runs Dijkstra algorithm from a given node. ///Runs Dijkstra algorithm from a given node. ///The node can be given by the \ref source function. void run() { if(Base::_source==INVALID) throw UninitializedParameter(); Dijkstra Dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length); if(Base::_pred) Dij.predMap(*(PredMap*)Base::_pred); if(Base::_predNode) Dij.predNodeMap(*(PredNodeMap*)Base::_predNode); if(Base::_dist) Dij.distMap(*(DistMap*)Base::_dist); Dij.run(Base::_source); } ///Runs Dijkstra algorithm from the given node. ///Runs Dijkstra algorithm from the given node. ///\param s is the given source. void run(Node s) { Base::_source=s; run(); } template struct DefPredMapBase : public Base { typedef T PredMap; static PredMap *createPredMap(const Graph &G) { return 0; }; DefPredMapBase(const Base &b) : Base(b) {} }; ///\brief \ref named-templ-param "Named parameter" ///function for setting PredMap type /// /// \ref named-templ-param "Named parameter" ///function for setting PredMap type /// template DijkstraWizard > predMap(const T &t) { Base::_pred=(void *)&t; return DijkstraWizard >(*this); } template struct DefPredNodeMapBase : public Base { typedef T PredNodeMap; static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; }; DefPredNodeMapBase(const Base &b) : Base(b) {} }; ///\brief \ref named-templ-param "Named parameter" ///function for setting PredNodeMap type /// /// \ref named-templ-param "Named parameter" ///function for setting PredNodeMap type /// template DijkstraWizard > predNodeMap(const T &t) { Base::_predNode=(void *)&t; return DijkstraWizard >(*this); } template struct DefDistMapBase : public Base { typedef T DistMap; static DistMap *createDistMap(const Graph &G) { return 0; }; DefDistMapBase(const Base &b) : Base(b) {} }; ///\brief \ref named-templ-param "Named parameter" ///function for setting DistMap type /// /// \ref named-templ-param "Named parameter" ///function for setting DistMap type /// template DijkstraWizard > distMap(const T &t) { Base::_dist=(void *)&t; return DijkstraWizard >(*this); } /// Sets the source node, from which the Dijkstra algorithm runs. /// Sets the source node, from which the Dijkstra algorithm runs. /// \param s is the source node. DijkstraWizard &source(Node s) { Base::_source=s; return *this; } }; ///\e /// \ingroup flowalgs ///\todo Please document... /// template DijkstraWizard > dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID) { return DijkstraWizard >(g,l,s); } /// @} } //END OF NAMESPACE LEMON #endif