/* -*- C++ -*- * src/lemon/graph_adaptor.h - Part of LEMON, a generic C++ optimization library * * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_GRAPH_ADAPTOR_H #define LEMON_GRAPH_ADAPTOR_H ///\ingroup graph_adaptors ///\file ///\brief Several graph adaptors. /// ///This file contains several useful graph adaptor functions. /// ///\author Marton Makai #include #include #include #include #include namespace lemon { // Graph adaptors /*! \addtogroup graph_adaptors @{ */ /*! Base type for the Graph Adaptors \warning Graph adaptors are in even more experimental state than the other parts of the lib. Use them at you own risk. This is the base type for most of LEMON graph adaptors. This class implements a trivial graph adaptor i.e. it only wraps the functions and types of the graph. The purpose of this class is to make easier implementing graph adaptors. E.g. if an adaptor is considered which differs from the wrapped graph only in some of its functions or types, then it can be derived from GraphAdaptor, and only the differences should be implemented. \author Marton Makai */ template class GraphAdaptorBase { public: typedef _Graph Graph; /// \todo Is it needed? typedef Graph BaseGraph; typedef Graph ParentGraph; protected: Graph* graph; GraphAdaptorBase() : graph(0) { } void setGraph(Graph& _graph) { graph=&_graph; } public: GraphAdaptorBase(Graph& _graph) : graph(&_graph) { } typedef typename Graph::Node Node; typedef typename Graph::Edge Edge; void first(Node& i) const { graph->first(i); } void first(Edge& i) const { graph->first(i); } void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); } void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); } void next(Node& i) const { graph->next(i); } void next(Edge& i) const { graph->next(i); } void nextIn(Edge& i) const { graph->nextIn(i); } void nextOut(Edge& i) const { graph->nextOut(i); } Node source(const Edge& e) const { return graph->source(e); } Node target(const Edge& e) const { return graph->target(e); } int nodeNum() const { return graph->nodeNum(); } int edgeNum() const { return graph->edgeNum(); } Node addNode() const { return Node(graph->addNode()); } Edge addEdge(const Node& source, const Node& target) const { return Edge(graph->addEdge(source, target)); } void erase(const Node& i) const { graph->erase(i); } void erase(const Edge& i) const { graph->erase(i); } void clear() const { graph->clear(); } bool forward(const Edge& e) const { return graph->forward(e); } bool backward(const Edge& e) const { return graph->backward(e); } int id(const Node& v) const { return graph->id(v); } int id(const Edge& e) const { return graph->id(e); } Edge opposite(const Edge& e) const { return Edge(graph->opposite(e)); } template class NodeMap : public _Graph::template NodeMap<_Value> { public: typedef typename _Graph::template NodeMap<_Value> Parent; NodeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { } NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value) : Parent(*gw.graph, value) { } }; template class EdgeMap : public _Graph::template EdgeMap<_Value> { public: typedef typename _Graph::template EdgeMap<_Value> Parent; EdgeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { } EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value) : Parent(*gw.graph, value) { } }; }; template class GraphAdaptor : public IterableGraphExtender > { public: typedef _Graph Graph; typedef IterableGraphExtender > Parent; protected: GraphAdaptor() : Parent() { } public: GraphAdaptor(Graph& _graph) { setGraph(_graph); } }; template class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> { public: typedef _Graph Graph; typedef GraphAdaptorBase<_Graph> Parent; protected: RevGraphAdaptorBase() : Parent() { } public: typedef typename Parent::Node Node; typedef typename Parent::Edge Edge; // using Parent::first; void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); } void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); } // using Parent::next; void nextIn(Edge& i) const { Parent::nextOut(i); } void nextOut(Edge& i) const { Parent::nextIn(i); } Node source(const Edge& e) const { return Parent::target(e); } Node target(const Edge& e) const { return Parent::source(e); } }; /// A graph adaptor which reverses the orientation of the edges. ///\warning Graph adaptors are in even more experimental state than the other ///parts of the lib. Use them at you own risk. /// /// Let \f$G=(V, A)\f$ be a directed graph and /// suppose that a graph instange \c g of type /// \c ListGraph implements \f$G\f$. /// \code /// ListGraph g; /// \endcode /// For each directed edge /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by /// reversing its orientation. /// Then RevGraphAdaptor implements the graph structure with node-set /// \f$V\f$ and edge-set /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be /// reversing the orientation of its edges. The following code shows how /// such an instance can be constructed. /// \code /// RevGraphAdaptor gw(g); /// \endcode ///\author Marton Makai template class RevGraphAdaptor : public IterableGraphExtender > { public: typedef _Graph Graph; typedef IterableGraphExtender< RevGraphAdaptorBase<_Graph> > Parent; protected: RevGraphAdaptor() { } public: RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); } }; template class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> { public: typedef _Graph Graph; typedef GraphAdaptorBase<_Graph> Parent; protected: NodeFilterMap* node_filter_map; EdgeFilterMap* edge_filter_map; SubGraphAdaptorBase() : Parent(), node_filter_map(0), edge_filter_map(0) { } void setNodeFilterMap(NodeFilterMap& _node_filter_map) { node_filter_map=&_node_filter_map; } void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) { edge_filter_map=&_edge_filter_map; } public: // SubGraphAdaptorBase(Graph& _graph, // NodeFilterMap& _node_filter_map, // EdgeFilterMap& _edge_filter_map) : // Parent(&_graph), // node_filter_map(&node_filter_map), // edge_filter_map(&edge_filter_map) { } typedef typename Parent::Node Node; typedef typename Parent::Edge Edge; void first(Node& i) const { Parent::first(i); while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); } void first(Edge& i) const { Parent::first(i); while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); } void firstIn(Edge& i, const Node& n) const { Parent::firstIn(i, n); while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); } void firstOut(Edge& i, const Node& n) const { Parent::firstOut(i, n); while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); } void next(Node& i) const { Parent::next(i); while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); } void next(Edge& i) const { Parent::next(i); while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); } void nextIn(Edge& i) const { Parent::nextIn(i); while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); } void nextOut(Edge& i) const { Parent::nextOut(i); while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); } /// This function hides \c n in the graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c n /// to be false in the corresponding node-map. void hide(const Node& n) const { node_filter_map->set(n, false); } /// This function hides \c e in the graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c e /// to be false in the corresponding edge-map. void hide(const Edge& e) const { edge_filter_map->set(e, false); } /// The value of \c n is set to be true in the node-map which stores /// hide information. If \c n was hidden previuosly, then it is shown /// again void unHide(const Node& n) const { node_filter_map->set(n, true); } /// The value of \c e is set to be true in the edge-map which stores /// hide information. If \c e was hidden previuosly, then it is shown /// again void unHide(const Edge& e) const { edge_filter_map->set(e, true); } /// Returns true if \c n is hidden. bool hidden(const Node& n) const { return !(*node_filter_map)[n]; } /// Returns true if \c n is hidden. bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; } /// \warning This is a linear time operation and works only if s /// \c Graph::NodeIt is defined. /// \todo assign tags. int nodeNum() const { int i=0; Node n; for (first(n); n!=INVALID; next(n)) ++i; return i; } /// \warning This is a linear time operation and works only if /// \c Graph::EdgeIt is defined. /// \todo assign tags. int edgeNum() const { int i=0; Edge e; for (first(e); e!=INVALID; next(e)) ++i; return i; } }; /*! \brief A graph adaptor for hiding nodes and edges from a graph. \warning Graph adaptors are in even more experimental state than the other parts of the lib. Use them at you own risk. SubGraphAdaptor shows the graph with filtered node-set and edge-set. Let \f$G=(V, A)\f$ be a directed graph and suppose that the graph instance \c g of type ListGraph implements \f$G\f$. Let moreover \f$b_V\f$ and \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. SubGraphAdaptor<...>::NodeIt iterates on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and SubGraphAdaptor<...>::EdgeIt iterates on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, SubGraphAdaptor<...>::OutEdgeIt and SubGraphAdaptor<...>::InEdgeIt iterates only on edges leaving and entering a specific node which have true value. We have to note that this does not mean that an induced subgraph is obtained, the node-iterator cares only the filter on the node-set, and the edge-iterators care only the filter on the edge-set. \code typedef ListGraph Graph; Graph g; typedef Graph::Node Node; typedef Graph::Edge Edge; Node u=g.addNode(); //node of id 0 Node v=g.addNode(); //node of id 1 Node e=g.addEdge(u, v); //edge of id 0 Node f=g.addEdge(v, u); //edge of id 1 Graph::NodeMap nm(g, true); nm.set(u, false); Graph::EdgeMap em(g, true); em.set(e, false); typedef SubGraphAdaptor, Graph::EdgeMap > SubGW; SubGW gw(g, nm, em); for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl; std::cout << ":-)" << std::endl; for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl; \endcode The output of the above code is the following. \code 1 :-) 1 \endcode Note that \c n is of type \c SubGW::NodeIt, but it can be converted to \c Graph::Node that is why \c g.id(n) can be applied. For other examples see also the documentation of NodeSubGraphAdaptor and EdgeSubGraphAdaptor. \author Marton Makai */ template class SubGraphAdaptor : public IterableGraphExtender< SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > { public: typedef _Graph Graph; typedef IterableGraphExtender< SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent; protected: SubGraphAdaptor() { } public: SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, EdgeFilterMap& _edge_filter_map) { setGraph(_graph); setNodeFilterMap(_node_filter_map); setEdgeFilterMap(_edge_filter_map); } }; /*! \brief An adaptor for hiding nodes from a graph. \warning Graph adaptors are in even more experimental state than the other parts of the lib. Use them at you own risk. An adaptor for hiding nodes from a graph. This adaptor specializes SubGraphAdaptor in the way that only the node-set can be filtered. Note that this does not mean of considering induced subgraph, the edge-iterators consider the original edge-set. \author Marton Makai */ template class NodeSubGraphAdaptor : public SubGraphAdaptor > { public: typedef SubGraphAdaptor > Parent; protected: ConstMap const_true_map; public: NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : Parent(), const_true_map(true) { Parent::setGraph(_graph); Parent::setNodeFilterMap(_node_filter_map); Parent::setEdgeFilterMap(const_true_map); } }; /*! \brief An adaptor for hiding edges from a graph. \warning Graph adaptors are in even more experimental state than the other parts of the lib. Use them at you own risk. An adaptor for hiding edges from a graph. This adaptor specializes SubGraphAdaptor in the way that only the edge-set can be filtered. The usefulness of this adaptor is demonstrated in the problem of searching a maximum number of edge-disjoint shortest paths between two nodes \c s and \c t. Shortest here means being shortest w.r.t. non-negative edge-lengths. Note that the comprehension of the presented solution need's some elementary knowledge from combinatorial optimization. If a single shortest path is to be searched between \c s and \c t, then this can be done easily by applying the Dijkstra algorithm. What happens, if a maximum number of edge-disjoint shortest paths is to be computed. It can be proved that an edge can be in a shortest path if and only if it is tight with respect to the potential function computed by Dijkstra. Moreover, any path containing only such edges is a shortest one. Thus we have to compute a maximum number of edge-disjoint paths between \c s and \c t in the graph which has edge-set all the tight edges. The computation will be demonstrated on the following graph, which is read from the dimacs file \ref sub_graph_adaptor_demo.dim. The full source code is available in \ref sub_graph_adaptor_demo.cc. If you are interested in more demo programs, you can use \ref dim_to_dot.cc to generate .dot files from dimacs files. The .dot file of the following figure of was generated generated by the demo program \ref dim_to_dot.cc. \dot digraph lemon_dot_example { node [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; n0 [ label="0 (s)" ]; n1 [ label="1" ]; n2 [ label="2" ]; n3 [ label="3" ]; n4 [ label="4" ]; n5 [ label="5" ]; n6 [ label="6 (t)" ]; edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; n5 -> n6 [ label="9, length:4" ]; n4 -> n6 [ label="8, length:2" ]; n3 -> n5 [ label="7, length:1" ]; n2 -> n5 [ label="6, length:3" ]; n2 -> n6 [ label="5, length:5" ]; n2 -> n4 [ label="4, length:2" ]; n1 -> n4 [ label="3, length:3" ]; n0 -> n3 [ label="2, length:1" ]; n0 -> n2 [ label="1, length:2" ]; n0 -> n1 [ label="0, length:3" ]; } \enddot \code Graph g; Node s, t; LengthMap length(g); readDimacs(std::cin, g, length, s, t); cout << "edges with lengths (of form id, source--length->target): " << endl; for(EdgeIt e(g); e!=INVALID; ++e) cout << g.id(e) << ", " << g.id(g.source(e)) << "--" << length[e] << "->" << g.id(g.target(e)) << endl; cout << "s: " << g.id(s) << " t: " << g.id(t) << endl; \endcode Next, the potential function is computed with Dijkstra. \code typedef Dijkstra Dijkstra; Dijkstra dijkstra(g, length); dijkstra.run(s); \endcode Next, we consrtruct a map which filters the edge-set to the tight edges. \code typedef TightEdgeFilterMap TightEdgeFilter; TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length); typedef EdgeSubGraphAdaptor SubGW; SubGW gw(g, tight_edge_filter); \endcode Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed with a max flow algorithm Preflow. \code ConstMap const_1_map(1); Graph::EdgeMap flow(g, 0); Preflow, Graph::EdgeMap > preflow(gw, s, t, const_1_map, flow); preflow.run(); \endcode Last, the output is: \code cout << "maximum number of edge-disjoint shortest path: " << preflow.flowValue() << endl; cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " << endl; for(EdgeIt e(g); e!=INVALID; ++e) if (flow[e]) cout << " " << g.id(g.source(e)) << "--" << length[e] << "->" << g.id(g.target(e)) << endl; \endcode The program has the following (expected :-)) output: \code edges with lengths (of form id, source--length->target): 9, 5--4->6 8, 4--2->6 7, 3--1->5 6, 2--3->5 5, 2--5->6 4, 2--2->4 3, 1--3->4 2, 0--1->3 1, 0--2->2 0, 0--3->1 s: 0 t: 6 maximum number of edge-disjoint shortest path: 2 edges of the maximum number of edge-disjoint shortest s-t paths: 9, 5--4->6 8, 4--2->6 7, 3--1->5 4, 2--2->4 2, 0--1->3 1, 0--2->2 \endcode \author Marton Makai */ template class EdgeSubGraphAdaptor : public SubGraphAdaptor, EdgeFilterMap> { public: typedef SubGraphAdaptor, EdgeFilterMap> Parent; protected: ConstMap const_true_map; public: EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : Parent(), const_true_map(true) { Parent::setGraph(_graph); Parent::setNodeFilterMap(const_true_map); Parent::setEdgeFilterMap(_edge_filter_map); } }; template class UndirGraphAdaptorBase : public UndirGraphExtender > { public: typedef _Graph Graph; typedef UndirGraphExtender > Parent; protected: UndirGraphAdaptorBase() : Parent() { } public: typedef typename Parent::UndirEdge UndirEdge; typedef typename Parent::Edge Edge; /// \bug Why cant an edge say that it is forward or not??? /// By this, a pointer to the graph have to be stored /// The implementation template class EdgeMap { protected: const UndirGraphAdaptorBase<_Graph>* g; template friend class EdgeMap; typename _Graph::template EdgeMap forward_map, backward_map; public: typedef T Value; typedef Edge Key; EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g) : g(&_g), forward_map(*(g->graph)), backward_map(*(g->graph)) { } EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g, T a) : g(&_g), forward_map(*(g->graph), a), backward_map(*(g->graph), a) { } void set(Edge e, T a) { if (g->forward(e)) forward_map.set(e, a); else backward_map.set(e, a); } T operator[](Edge e) const { if (g->forward(e)) return forward_map[e]; else return backward_map[e]; } }; template class UndirEdgeMap { template friend class UndirEdgeMap; typename _Graph::template EdgeMap map; public: typedef T Value; typedef UndirEdge Key; UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g) : map(*(g.graph)) { } UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g, T a) : map(*(g.graph), a) { } void set(UndirEdge e, T a) { map.set(e, a); } T operator[](UndirEdge e) const { return map[e]; } }; }; /// \brief An undirected graph is made from a directed graph by an adaptor /// /// Undocumented, untested!!! /// If somebody knows nice demo application, let's polulate it. /// /// \author Marton Makai template class UndirGraphAdaptor : public IterableUndirGraphExtender< UndirGraphAdaptorBase<_Graph> > { public: typedef _Graph Graph; typedef IterableUndirGraphExtender< UndirGraphAdaptorBase<_Graph> > Parent; protected: UndirGraphAdaptor() { } public: UndirGraphAdaptor(_Graph& _graph) { setGraph(_graph); } }; template class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> { public: typedef _Graph Graph; typedef GraphAdaptorBase<_Graph> Parent; protected: ForwardFilterMap* forward_filter; BackwardFilterMap* backward_filter; SubBidirGraphAdaptorBase() : Parent(), forward_filter(0), backward_filter(0) { } void setForwardFilterMap(ForwardFilterMap& _forward_filter) { forward_filter=&_forward_filter; } void setBackwardFilterMap(BackwardFilterMap& _backward_filter) { backward_filter=&_backward_filter; } public: // SubGraphAdaptorBase(Graph& _graph, // NodeFilterMap& _node_filter_map, // EdgeFilterMap& _edge_filter_map) : // Parent(&_graph), // node_filter_map(&node_filter_map), // edge_filter_map(&edge_filter_map) { } typedef typename Parent::Node Node; typedef typename _Graph::Edge GraphEdge; template class EdgeMap; /// SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from /// _Graph::Edge. It contains an extra bool flag which is true /// if and only if the /// edge is the backward version of the original edge. class Edge : public _Graph::Edge { friend class SubBidirGraphAdaptorBase< Graph, ForwardFilterMap, BackwardFilterMap>; template friend class EdgeMap; protected: bool backward; //true, iff backward public: Edge() { } /// \todo =false is needed, or causes problems? /// If \c _backward is false, then we get an edge corresponding to the /// original one, otherwise its oppositely directed pair is obtained. Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : _Graph::Edge(e), backward(_backward) { } Edge(Invalid i) : _Graph::Edge(i), backward(true) { } bool operator==(const Edge& v) const { return (this->backward==v.backward && static_cast(*this)== static_cast(v)); } bool operator!=(const Edge& v) const { return (this->backward!=v.backward || static_cast(*this)!= static_cast(v)); } }; void first(Node& i) const { Parent::first(i); } void first(Edge& i) const { Parent::first(i); i.backward=false; while (*static_cast(&i)!=INVALID && !(*forward_filter)[i]) Parent::next(i); if (*static_cast(&i)==INVALID) { Parent::first(i); i.backward=true; while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::next(i); } } void firstIn(Edge& i, const Node& n) const { Parent::firstIn(i, n); i.backward=false; while (*static_cast(&i)!=INVALID && !(*forward_filter)[i]) Parent::nextIn(i); if (*static_cast(&i)==INVALID) { Parent::firstOut(i, n); i.backward=true; while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::nextOut(i); } } void firstOut(Edge& i, const Node& n) const { Parent::firstOut(i, n); i.backward=false; while (*static_cast(&i)!=INVALID && !(*forward_filter)[i]) Parent::nextOut(i); if (*static_cast(&i)==INVALID) { Parent::firstIn(i, n); i.backward=true; while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::nextIn(i); } } void next(Node& i) const { Parent::next(i); } void next(Edge& i) const { if (!(i.backward)) { Parent::next(i); while (*static_cast(&i)!=INVALID && !(*forward_filter)[i]) Parent::next(i); if (*static_cast(&i)==INVALID) { Parent::first(i); i.backward=true; while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::next(i); } } else { Parent::next(i); while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::next(i); } } void nextIn(Edge& i) const { if (!(i.backward)) { Node n=Parent::target(i); Parent::nextIn(i); while (*static_cast(&i)!=INVALID && !(*forward_filter)[i]) Parent::nextIn(i); if (*static_cast(&i)==INVALID) { Parent::firstOut(i, n); i.backward=true; while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::nextOut(i); } } else { Parent::nextOut(i); while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::nextOut(i); } } void nextOut(Edge& i) const { if (!(i.backward)) { Node n=Parent::source(i); Parent::nextOut(i); while (*static_cast(&i)!=INVALID && !(*forward_filter)[i]) Parent::nextOut(i); if (*static_cast(&i)==INVALID) { Parent::firstIn(i, n); i.backward=true; while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::nextIn(i); } } else { Parent::nextIn(i); while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::nextIn(i); } } Node source(Edge e) const { return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); } Node target(Edge e) const { return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); } /// Gives back the opposite edge. Edge opposite(const Edge& e) const { Edge f=e; f.backward=!f.backward; return f; } /// \warning This is a linear time operation and works only if /// \c Graph::EdgeIt is defined. /// \todo hmm int edgeNum() const { int i=0; Edge e; for (first(e); e!=INVALID; next(e)) ++i; return i; } bool forward(const Edge& e) const { return !e.backward; } bool backward(const Edge& e) const { return e.backward; } template /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two /// _Graph::EdgeMap one for the forward edges and /// one for the backward edges. class EdgeMap { template friend class EdgeMap; typename _Graph::template EdgeMap forward_map, backward_map; public: typedef T Value; typedef Edge Key; EdgeMap(const SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap>& g) : forward_map(*(g.graph)), backward_map(*(g.graph)) { } EdgeMap(const SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap>& g, T a) : forward_map(*(g.graph), a), backward_map(*(g.graph), a) { } void set(Edge e, T a) { if (!e.backward) forward_map.set(e, a); else backward_map.set(e, a); } // typename _Graph::template EdgeMap::ConstReference // operator[](Edge e) const { // if (!e.backward) // return forward_map[e]; // else // return backward_map[e]; // } // typename _Graph::template EdgeMap::Reference T operator[](Edge e) const { if (!e.backward) return forward_map[e]; else return backward_map[e]; } void update() { forward_map.update(); backward_map.update(); } }; }; ///\brief An adaptor for composing a subgraph of a /// bidirected graph made from a directed one. /// /// An adaptor for composing a subgraph of a /// bidirected graph made from a directed one. /// ///\warning Graph adaptors are in even more experimental state than the other ///parts of the lib. Use them at you own risk. /// /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by /// reversing its orientation. We are given moreover two bool valued /// maps on the edge-set, /// \f$forward\_filter\f$, and \f$backward\_filter\f$. /// SubBidirGraphAdaptor implements the graph structure with node-set /// \f$V\f$ and edge-set /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. /// The purpose of writing + instead of union is because parallel /// edges can arise. (Similarly, antiparallel edges also can arise). /// In other words, a subgraph of the bidirected graph obtained, which /// is given by orienting the edges of the original graph in both directions. /// As the oppositely directed edges are logically different, /// the maps are able to attach different values for them. /// /// An example for such a construction is \c RevGraphAdaptor where the /// forward_filter is everywhere false and the backward_filter is /// everywhere true. We note that for sake of efficiency, /// \c RevGraphAdaptor is implemented in a different way. /// But BidirGraphAdaptor is obtained from /// SubBidirGraphAdaptor by considering everywhere true /// valued maps both for forward_filter and backward_filter. /// /// The most important application of SubBidirGraphAdaptor /// is ResGraphAdaptor, which stands for the residual graph in directed /// flow and circulation problems. /// As adaptors usually, the SubBidirGraphAdaptor implements the /// above mentioned graph structure without its physical storage, /// that is the whole stuff is stored in constant memory. template class SubBidirGraphAdaptor : public IterableGraphExtender< SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > { public: typedef _Graph Graph; typedef IterableGraphExtender< SubBidirGraphAdaptorBase< _Graph, ForwardFilterMap, BackwardFilterMap> > Parent; protected: SubBidirGraphAdaptor() { } public: SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter, BackwardFilterMap& _backward_filter) { setGraph(_graph); setForwardFilterMap(_forward_filter); setBackwardFilterMap(_backward_filter); } }; ///\brief An adaptor for composing bidirected graph from a directed one. /// ///\warning Graph adaptors are in even more experimental state than the other ///parts of the lib. Use them at you own risk. /// /// An adaptor for composing bidirected graph from a directed one. /// A bidirected graph is composed over the directed one without physical /// storage. As the oppositely directed edges are logically different ones /// the maps are able to attach different values for them. template class BidirGraphAdaptor : public SubBidirGraphAdaptor< Graph, ConstMap, ConstMap > { public: typedef SubBidirGraphAdaptor< Graph, ConstMap, ConstMap > Parent; protected: ConstMap cm; BidirGraphAdaptor() : Parent(), cm(true) { Parent::setForwardFilterMap(cm); Parent::setBackwardFilterMap(cm); } public: BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) { Parent::setGraph(_graph); Parent::setForwardFilterMap(cm); Parent::setBackwardFilterMap(cm); } int edgeNum() const { return 2*this->graph->edgeNum(); } // KEEP_MAPS(Parent, BidirGraphAdaptor); }; template class ResForwardFilter { // const Graph* graph; const CapacityMap* capacity; const FlowMap* flow; public: ResForwardFilter(/*const Graph& _graph, */ const CapacityMap& _capacity, const FlowMap& _flow) : /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { } ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { } void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; } void setFlow(const FlowMap& _flow) { flow=&_flow; } bool operator[](const typename Graph::Edge& e) const { return (Number((*flow)[e]) < Number((*capacity)[e])); } }; template class ResBackwardFilter { const CapacityMap* capacity; const FlowMap* flow; public: ResBackwardFilter(/*const Graph& _graph,*/ const CapacityMap& _capacity, const FlowMap& _flow) : /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { } ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { } void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; } void setFlow(const FlowMap& _flow) { flow=&_flow; } bool operator[](const typename Graph::Edge& e) const { return (Number(0) < Number((*flow)[e])); } }; /*! \brief An adaptor for composing the residual graph for directed flow and circulation problems. An adaptor for composing the residual graph for directed flow and circulation problems. Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a number type. Let moreover \f$f,c:A\to F\f$, be functions on the edge-set. In the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow and \f$c\f$ for a capacity function. Suppose that a graph instange \c g of type \c ListGraph implements \f$G\f$. \code ListGraph g; \endcode Then RevGraphAdaptor implements the graph structure with node-set \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where \f$A_{forward}=\{uv : uv\in A, f(uv)0\}\f$, i.e. the so called residual graph. When we take the union \f$A_{forward}\cup A_{backward}\f$, multilicities are counted, i.e. if an edge is in both \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it appears twice. The following code shows how such an instance can be constructed. \code typedef ListGraph Graph; Graph::EdgeMap f(g); Graph::EdgeMap c(g); ResGraphAdaptor, Graph::EdgeMap > gw(g); \endcode \author Marton Makai */ template class ResGraphAdaptor : public SubBidirGraphAdaptor< Graph, ResForwardFilter, ResBackwardFilter > { public: typedef SubBidirGraphAdaptor< Graph, ResForwardFilter, ResBackwardFilter > Parent; protected: const CapacityMap* capacity; FlowMap* flow; ResForwardFilter forward_filter; ResBackwardFilter backward_filter; ResGraphAdaptor() : Parent(), capacity(0), flow(0) { } void setCapacityMap(const CapacityMap& _capacity) { capacity=&_capacity; forward_filter.setCapacity(_capacity); backward_filter.setCapacity(_capacity); } void setFlowMap(FlowMap& _flow) { flow=&_flow; forward_filter.setFlow(_flow); backward_filter.setFlow(_flow); } public: ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity, FlowMap& _flow) : Parent(), capacity(&_capacity), flow(&_flow), forward_filter(/*_graph,*/ _capacity, _flow), backward_filter(/*_graph,*/ _capacity, _flow) { Parent::setGraph(_graph); Parent::setForwardFilterMap(forward_filter); Parent::setBackwardFilterMap(backward_filter); } typedef typename Parent::Edge Edge; void augment(const Edge& e, Number a) const { if (Parent::forward(e)) flow->set(e, (*flow)[e]+a); else flow->set(e, (*flow)[e]-a); } /// \brief Residual capacity map. /// /// In generic residual graphs the residual capacity can be obtained /// as a map. class ResCap { protected: const ResGraphAdaptor* res_graph; public: typedef Number Value; typedef Edge Key; ResCap(const ResGraphAdaptor& _res_graph) : res_graph(&_res_graph) { } Number operator[](const Edge& e) const { if (res_graph->forward(e)) return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; else return (*(res_graph->flow))[e]; } }; // KEEP_MAPS(Parent, ResGraphAdaptor); }; template class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> { public: typedef _Graph Graph; typedef GraphAdaptorBase<_Graph> Parent; protected: FirstOutEdgesMap* first_out_edges; ErasingFirstGraphAdaptorBase() : Parent(), first_out_edges(0) { } void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) { first_out_edges=&_first_out_edges; } public: typedef typename Parent::Node Node; typedef typename Parent::Edge Edge; void firstOut(Edge& i, const Node& n) const { i=(*first_out_edges)[n]; } void erase(const Edge& e) const { Node n=source(e); Edge f=e; Parent::nextOut(f); first_out_edges->set(n, f); } }; /// For blocking flows. ///\warning Graph adaptors are in even more experimental state than the other ///parts of the lib. Use them at you own risk. /// /// This graph adaptor is used for on-the-fly /// Dinits blocking flow computations. /// For each node, an out-edge is stored which is used when the /// \code /// OutEdgeIt& first(OutEdgeIt&, const Node&) /// \endcode /// is called. /// /// \author Marton Makai template class ErasingFirstGraphAdaptor : public IterableGraphExtender< ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > { public: typedef _Graph Graph; typedef IterableGraphExtender< ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent; ErasingFirstGraphAdaptor(Graph& _graph, FirstOutEdgesMap& _first_out_edges) { setGraph(_graph); setFirstOutEdgesMap(_first_out_edges); } }; ///@} } //namespace lemon #endif //LEMON_GRAPH_ADAPTOR_H