COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/lemon/lp_base.h @ 1331:7e93d3f0406d

Last change on this file since 1331:7e93d3f0406d was 1328:a8dd11348853, checked in by Alpar Juttner, 19 years ago
  • Insert LP stuff into the module structure
  • More doc
File size: 22.9 KB
RevLine 
[1247]1/* -*- C++ -*-
[1253]2 * src/lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
[1247]3 *
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Combinatorial Optimization Research Group, EGRES).
6 *
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
10 *
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
13 * purpose.
14 *
15 */
16
[1246]17#ifndef LEMON_LP_BASE_H
18#define LEMON_LP_BASE_H
19
[1253]20#include<vector>
[1272]21#include<map>
[1256]22#include<limits>
[1273]23#include<math.h>
[1253]24
[1256]25#include<lemon/utility.h>
[1253]26#include<lemon/error.h>
[1256]27#include<lemon/invalid.h>
[1253]28
[1272]29//#include"lin_expr.h"
30
[1246]31///\file
32///\brief The interface of the LP solver interface.
[1328]33///\ingroup gen_opt_group
[1246]34namespace lemon {
[1253]35 
36  ///Internal data structure to convert floating id's to fix one's
37   
[1279]38  ///\todo This might be implemented to be also usable in other places.
[1253]39  class _FixId
40  {
41    std::vector<int> index;
42    std::vector<int> cross;
43    int first_free;
44  public:
45    _FixId() : first_free(-1) {};
46    ///Convert a floating id to a fix one
47
48    ///\param n is a floating id
49    ///\return the corresponding fix id
50    int fixId(int n) {return cross[n];}
51    ///Convert a fix id to a floating one
52
53    ///\param n is a fix id
54    ///\return the corresponding floating id
55    int floatingId(int n) { return index[n];}
56    ///Add a new floating id.
57
58    ///\param n is a floating id
59    ///\return the fix id of the new value
60    ///\todo Multiple additions should also be handled.
61    int insert(int n)
62    {
63      if(n>=int(cross.size())) {
64        cross.resize(n+1);
65        if(first_free==-1) {
66          cross[n]=index.size();
67          index.push_back(n);
68        }
69        else {
70          cross[n]=first_free;
71          int next=index[first_free];
72          index[first_free]=n;
73          first_free=next;
74        }
[1256]75        return cross[n];
[1253]76      }
[1273]77      ///\todo Create an own exception type.
[1253]78      else throw LogicError(); //floatingId-s must form a continuous range;
79    }
80    ///Remove a fix id.
81
82    ///\param n is a fix id
83    ///
84    void erase(int n)
85    {
86      int fl=index[n];
87      index[n]=first_free;
88      first_free=n;
89      for(int i=fl+1;i<int(cross.size());++i) {
90        cross[i-1]=cross[i];
91        index[cross[i]]--;
92      }
93      cross.pop_back();
94    }
95    ///An upper bound on the largest fix id.
96
97    ///\todo Do we need this?
98    ///
99    std::size_t maxFixId() { return cross.size()-1; }
100 
101  };
102   
103  ///Common base class for LP solvers
[1328]104 
105  ///\todo Much more docs
106  ///\ingroup gen_opt_group
[1246]107  class LpSolverBase {
[1323]108
[1247]109  public:
110
[1263]111    ///\e
[1303]112    enum SolveExitStatus {
[1263]113      ///\e
[1293]114      SOLVED = 0,
[1263]115      ///\e
[1293]116      UNSOLVED = 1
[1291]117    };
118     
119    ///\e
[1303]120    enum SolutionStatus {
[1295]121      ///Feasible solution has'n been found (but may exist).
122
123      ///\todo NOTFOUND might be a better name.
124      ///
[1293]125      UNDEFINED = 0,
[1295]126      ///The problem has no feasible solution
[1293]127      INFEASIBLE = 1,
[1295]128      ///Feasible solution found
[1293]129      FEASIBLE = 2,
[1295]130      ///Optimal solution exists and found
131      OPTIMAL = 3,
132      ///The cost function is unbounded
133
134      ///\todo Give a feasible solution and an infinite ray (and the
135      ///corresponding bases)
136      INFINITE = 4
[1263]137    };
138     
[1256]139    ///The floating point type used by the solver
[1247]140    typedef double Value;
[1256]141    ///The infinity constant
[1247]142    static const Value INF;
[1264]143    ///The not a number constant
144    static const Value NaN;
[1253]145   
[1256]146    ///Refer to a column of the LP.
147
148    ///This type is used to refer to a column of the LP.
149    ///
150    ///Its value remains valid and correct even after the addition or erase of
[1273]151    ///other columns.
[1256]152    ///
153    ///\todo Document what can one do with a Col (INVALID, comparing,
154    ///it is similar to Node/Edge)
155    class Col {
156    protected:
157      int id;
158      friend class LpSolverBase;
159    public:
[1259]160      typedef Value ExprValue;
[1256]161      typedef True LpSolverCol;
162      Col() {}
163      Col(const Invalid&) : id(-1) {}
164      bool operator<(Col c) const  {return id<c.id;}
165      bool operator==(Col c) const  {return id==c.id;}
166      bool operator!=(Col c) const  {return id==c.id;}
167    };
168
169    ///Refer to a row of the LP.
170
171    ///This type is used to refer to a row of the LP.
172    ///
173    ///Its value remains valid and correct even after the addition or erase of
[1273]174    ///other rows.
[1256]175    ///
176    ///\todo Document what can one do with a Row (INVALID, comparing,
177    ///it is similar to Node/Edge)
178    class Row {
179    protected:
180      int id;
181      friend class LpSolverBase;
182    public:
[1259]183      typedef Value ExprValue;
[1256]184      typedef True LpSolverRow;
185      Row() {}
186      Row(const Invalid&) : id(-1) {}
187      typedef True LpSolverRow;
188      bool operator<(Row c) const  {return id<c.id;}
189      bool operator==(Row c) const  {return id==c.id;}
190      bool operator!=(Row c) const  {return id==c.id;}
191   };
[1259]192   
[1279]193    ///Linear expression of variables and a constant component
194   
195    ///This data structure strores a linear expression of the variables
196    ///(\ref Col "Col"s) and also has a constant component.
197    ///
198    ///There are several ways to access and modify the contents of this
199    ///container.
200    ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
201    ///if \c e is an Expr and \c v and \c w are of type \ref Col then you can
202    ///read and modify the coefficients like
203    ///these.
204    ///\code
205    ///e[v]=5;
206    ///e[v]+=12;
207    ///e.erase(v);
208    ///\endcode
209    ///or you can also iterate through its elements.
210    ///\code
211    ///double s=0;
212    ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
213    ///  s+=i->second;
214    ///\endcode
215    ///(This code computes the sum of all coefficients).
216    ///- Numbers (<tt>double</tt>'s)
217    ///and variables (\ref Col "Col"s) directly convert to an
218    ///\ref Expr and the usual linear operations are defined so 
219    ///\code
220    ///v+w
221    ///2*v-3.12*(v-w/2)+2
222    ///v*2.1+(3*v+(v*12+w+6)*3)/2
223    ///\endcode
[1328]224    ///are valid \ref Expr "Expr"essions.
225    ///The usual assignment operations are also defined.
[1279]226    ///\code
227    ///e=v+w;
228    ///e+=2*v-3.12*(v-w/2)+2;
229    ///e*=3.4;
230    ///e/=5;
231    ///\endcode
232    ///- The constant member can be set and read by \ref constComp()
233    ///\code
234    ///e.constComp()=12;
235    ///double c=e.constComp();
236    ///\endcode
237    ///
[1328]238    ///\note \ref clear() not only sets all coefficients to 0 but also
[1279]239    ///clears the constant components.
[1328]240    ///
241    ///\sa Constr
242    ///
[1273]243    class Expr : public std::map<Col,Value>
[1272]244    {
245    public:
[1273]246      typedef LpSolverBase::Col Key;
247      typedef LpSolverBase::Value Value;
[1272]248     
249    protected:
[1273]250      typedef std::map<Col,Value> Base;
[1272]251     
[1273]252      Value const_comp;
[1272]253  public:
254      typedef True IsLinExpression;
255      ///\e
256      Expr() : Base(), const_comp(0) { }
257      ///\e
[1273]258      Expr(const Key &v) : const_comp(0) {
[1272]259        Base::insert(std::make_pair(v, 1));
260      }
261      ///\e
[1273]262      Expr(const Value &v) : const_comp(v) {}
[1272]263      ///\e
[1273]264      void set(const Key &v,const Value &c) {
[1272]265        Base::insert(std::make_pair(v, c));
266      }
267      ///\e
[1273]268      Value &constComp() { return const_comp; }
[1272]269      ///\e
[1273]270      const Value &constComp() const { return const_comp; }
[1272]271     
272      ///Removes the components with zero coefficient.
273      void simplify() {
274        for (Base::iterator i=Base::begin(); i!=Base::end();) {
275          Base::iterator j=i;
276          ++j;
277          if ((*i).second==0) Base::erase(i);
278          j=i;
279        }
280      }
[1273]281
282      ///Sets all coefficients and the constant component to 0.
283      void clear() {
284        Base::clear();
285        const_comp=0;
286      }
287
[1272]288      ///\e
289      Expr &operator+=(const Expr &e) {
290        for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
291          (*this)[j->first]+=j->second;
292        ///\todo it might be speeded up using "hints"
293        const_comp+=e.const_comp;
294        return *this;
295      }
296      ///\e
297      Expr &operator-=(const Expr &e) {
298        for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
299          (*this)[j->first]-=j->second;
300        const_comp-=e.const_comp;
301        return *this;
302      }
303      ///\e
[1273]304      Expr &operator*=(const Value &c) {
[1272]305        for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
306          j->second*=c;
307        const_comp*=c;
308        return *this;
309      }
310      ///\e
[1273]311      Expr &operator/=(const Value &c) {
[1272]312        for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
313          j->second/=c;
314        const_comp/=c;
315        return *this;
316      }
317    };
318   
[1264]319    ///Linear constraint
[1328]320
321    ///\todo document please
322    ///
[1272]323    class Constr
324    {
325    public:
326      typedef LpSolverBase::Expr Expr;
[1273]327      typedef Expr::Key Key;
328      typedef Expr::Value Value;
[1272]329     
[1273]330      static const Value INF;
331      static const Value NaN;
332      //     static const Value INF=0;
333      //     static const Value NaN=1;
[1272]334     
[1273]335    protected:
336      Expr _expr;
337      Value _lb,_ub;
338    public:
339      ///\e
340      Constr() : _expr(), _lb(NaN), _ub(NaN) {}
341      ///\e
342      Constr(Value lb,const Expr &e,Value ub) :
343        _expr(e), _lb(lb), _ub(ub) {}
344      ///\e
345      Constr(const Expr &e,Value ub) :
346        _expr(e), _lb(NaN), _ub(ub) {}
347      ///\e
348      Constr(Value lb,const Expr &e) :
349        _expr(e), _lb(lb), _ub(NaN) {}
350      ///\e
[1272]351      Constr(const Expr &e) :
[1273]352        _expr(e), _lb(NaN), _ub(NaN) {}
353      ///\e
354      void clear()
355      {
356        _expr.clear();
357        _lb=_ub=NaN;
358      }
359      ///\e
360      Expr &expr() { return _expr; }
361      ///\e
362      const Expr &expr() const { return _expr; }
363      ///\e
364      Value &lowerBound() { return _lb; }
365      ///\e
366      const Value &lowerBound() const { return _lb; }
367      ///\e
368      Value &upperBound() { return _ub; }
369      ///\e
370      const Value &upperBound() const { return _ub; }
[1275]371      ///\e
[1295]372      bool lowerBounded() const {
373        using namespace std;
374        return isfinite(_lb);
375      }
[1275]376      ///\e
[1295]377      bool upperBounded() const {
378        using namespace std;
379        return isfinite(_ub);
380      }
[1272]381    };
382   
[1253]383
384  protected:
385    _FixId rows;
386    _FixId cols;
[1246]387
[1323]388    //Abstract virtual functions
[1246]389    virtual int _addCol() = 0;
390    virtual int _addRow() = 0;
391    virtual void _setRowCoeffs(int i,
[1251]392                               int length,
[1247]393                               int  const * indices,
394                               Value  const * values ) = 0;
[1246]395    virtual void _setColCoeffs(int i,
[1251]396                               int length,
[1247]397                               int  const * indices,
398                               Value  const * values ) = 0;
[1294]399    virtual void _setColLowerBound(int i, Value value) = 0;
400    virtual void _setColUpperBound(int i, Value value) = 0;
401    virtual void _setRowLowerBound(int i, Value value) = 0;
402    virtual void _setRowUpperBound(int i, Value value) = 0;
403    virtual void _setObjCoeff(int i, Value obj_coef) = 0;
[1303]404    virtual SolveExitStatus _solve() = 0;
[1294]405    virtual Value _getPrimal(int i) = 0;
[1312]406    virtual Value _getPrimalValue() = 0;
407    virtual SolutionStatus _getPrimalStatus() = 0;
408    virtual void _setMax() = 0;
409    virtual void _setMin() = 0;
410   
[1323]411    //Own protected stuff
412   
413    //Constant component of the objective function
414    Value obj_const_comp;
415   
416    ///\e
417   
418    ///\bug Unimplemented
[1253]419    void clearObj() {}
[1323]420   
[1253]421  public:
422
[1323]423    ///\e
424    LpSolverBase() : obj_const_comp(0) {}
[1253]425
426    ///\e
427    virtual ~LpSolverBase() {}
428
[1294]429    ///\name Build up and modify of the LP
[1263]430
431    ///@{
432
[1253]433    ///Add a new empty column (i.e a new variable) to the LP
434    Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
[1263]435
[1294]436    ///\brief Adds several new columns
437    ///(i.e a variables) at once
[1256]438    ///
[1273]439    ///This magic function takes a container as its argument
[1256]440    ///and fills its elements
441    ///with new columns (i.e. variables)
[1273]442    ///\param t can be
443    ///- a standard STL compatible iterable container with
444    ///\ref Col as its \c values_type
445    ///like
446    ///\code
447    ///std::vector<LpSolverBase::Col>
448    ///std::list<LpSolverBase::Col>
449    ///\endcode
450    ///- a standard STL compatible iterable container with
451    ///\ref Col as its \c mapped_type
452    ///like
453    ///\code
[1312]454    ///std::map<AnyStatus,LpSolverBase::Col>
[1273]455    ///\endcode
456    ///- an iterable lemon \ref concept::WriteMap "write map" like
457    ///\code
458    ///ListGraph::NodeMap<LpSolverBase::Col>
459    ///ListGraph::EdgeMap<LpSolverBase::Col>
460    ///\endcode
[1256]461    ///\return The number of the created column.
462    ///\bug Iterable nodemap hasn't been implemented yet.
463#ifdef DOXYGEN
464    template<class T>
465    int addColSet(T &t) { return 0;}
466#else
467    template<class T>
468    typename enable_if<typename T::value_type::LpSolverCol,int>::type
469    addColSet(T &t,dummy<0> = 0) {
470      int s=0;
471      for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
472      return s;
473    }
474    template<class T>
475    typename enable_if<typename T::value_type::second_type::LpSolverCol,
476                       int>::type
477    addColSet(T &t,dummy<1> = 1) {
478      int s=0;
479      for(typename T::iterator i=t.begin();i!=t.end();++i) {
480        i->second=addCol();
481        s++;
482      }
483      return s;
484    }
[1272]485    template<class T>
486    typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
487                       int>::type
488    addColSet(T &t,dummy<2> = 2) {
489      ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
490      int s=0;
491      for(typename T::ValueSet::iterator i=t.valueSet().begin();
492          i!=t.valueSet().end();
493          ++i)
494        {
495          *i=addCol();
496          s++;
497        }
498      return s;
499    }
[1256]500#endif
[1263]501
[1253]502    ///Add a new empty row (i.e a new constaint) to the LP
[1258]503
504    ///This function adds a new empty row (i.e a new constaint) to the LP.
505    ///\return The created row
[1253]506    Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
507
[1258]508    ///Set a row (i.e a constaint) of the LP
[1253]509
[1258]510    ///\param r is the row to be modified
[1259]511    ///\param l is lower bound (-\ref INF means no bound)
[1258]512    ///\param e is a linear expression (see \ref Expr)
[1259]513    ///\param u is the upper bound (\ref INF means no bound)
[1253]514    ///\bug This is a temportary function. The interface will change to
515    ///a better one.
[1328]516    ///\todo Option to control whether a constraint with a single variable is
517    ///added or not.
[1258]518    void setRow(Row r, Value l,const Expr &e, Value u) {
[1253]519      std::vector<int> indices;
520      std::vector<Value> values;
521      indices.push_back(0);
522      values.push_back(0);
[1258]523      for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
[1256]524        if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
525          indices.push_back(cols.floatingId((*i).first.id));
526          values.push_back((*i).second);
527        }
[1253]528      _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
529                    &indices[0],&values[0]);
[1256]530      _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
531      _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
[1258]532    }
533
[1264]534    ///Set a row (i.e a constaint) of the LP
535
536    ///\param r is the row to be modified
537    ///\param c is a linear expression (see \ref Constr)
538    void setRow(Row r, const Constr &c) {
[1273]539      setRow(r,
[1275]540             c.lowerBounded()?c.lowerBound():-INF,
[1273]541             c.expr(),
[1275]542             c.upperBounded()?c.upperBound():INF);
[1264]543    }
544
[1258]545    ///Add a new row (i.e a new constaint) to the LP
546
[1259]547    ///\param l is the lower bound (-\ref INF means no bound)
[1258]548    ///\param e is a linear expression (see \ref Expr)
[1259]549    ///\param u is the upper bound (\ref INF means no bound)
[1258]550    ///\return The created row.
551    ///\bug This is a temportary function. The interface will change to
552    ///a better one.
553    Row addRow(Value l,const Expr &e, Value u) {
554      Row r=addRow();
555      setRow(r,l,e,u);
[1253]556      return r;
557    }
558
[1264]559    ///Add a new row (i.e a new constaint) to the LP
560
561    ///\param c is a linear expression (see \ref Constr)
562    ///\return The created row.
563    Row addRow(const Constr &c) {
564      Row r=addRow();
565      setRow(r,c);
566      return r;
567    }
568
[1253]569    /// Set the lower bound of a column (i.e a variable)
570
[1293]571    /// The upper bound of a variable (column) has to be given by an
[1253]572    /// extended number of type Value, i.e. a finite number of type
[1259]573    /// Value or -\ref INF.
[1293]574    void colLowerBound(Col c, Value value) {
[1253]575      _setColLowerBound(cols.floatingId(c.id),value);
576    }
577    /// Set the upper bound of a column (i.e a variable)
578
[1293]579    /// The upper bound of a variable (column) has to be given by an
[1253]580    /// extended number of type Value, i.e. a finite number of type
[1259]581    /// Value or \ref INF.
[1293]582    void colUpperBound(Col c, Value value) {
[1253]583      _setColUpperBound(cols.floatingId(c.id),value);
584    };
[1293]585    /// Set the lower and the upper bounds of a column (i.e a variable)
586
587    /// The lower and the upper bounds of
588    /// a variable (column) have to be given by an
589    /// extended number of type Value, i.e. a finite number of type
590    /// Value, -\ref INF or \ref INF.
591    void colBounds(Col c, Value lower, Value upper) {
592      _setColLowerBound(cols.floatingId(c.id),lower);
593      _setColUpperBound(cols.floatingId(c.id),upper);
594    }
595   
[1253]596    /// Set the lower bound of a row (i.e a constraint)
597
[1293]598    /// The lower bound of a linear expression (row) has to be given by an
[1253]599    /// extended number of type Value, i.e. a finite number of type
[1259]600    /// Value or -\ref INF.
[1293]601    void rowLowerBound(Row r, Value value) {
[1253]602      _setRowLowerBound(rows.floatingId(r.id),value);
603    };
604    /// Set the upper bound of a row (i.e a constraint)
605
[1293]606    /// The upper bound of a linear expression (row) has to be given by an
[1253]607    /// extended number of type Value, i.e. a finite number of type
[1259]608    /// Value or \ref INF.
[1293]609    void rowUpperBound(Row r, Value value) {
[1253]610      _setRowUpperBound(rows.floatingId(r.id),value);
611    };
[1293]612    /// Set the lower and the upper bounds of a row (i.e a variable)
613
614    /// The lower and the upper bounds of
615    /// a constraint (row) have to be given by an
616    /// extended number of type Value, i.e. a finite number of type
617    /// Value, -\ref INF or \ref INF.
618    void rowBounds(Row c, Value lower, Value upper) {
619      _setRowLowerBound(rows.floatingId(c.id),lower);
620      _setRowUpperBound(rows.floatingId(c.id),upper);
621    }
622   
[1253]623    ///Set an element of the objective function
[1293]624    void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
[1253]625    ///Set the objective function
626   
627    ///\param e is a linear expression of type \ref Expr.
[1323]628    ///\bug The previous objective function is not cleared!
[1253]629    void setObj(Expr e) {
630      clearObj();
631      for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
[1293]632        objCoeff((*i).first,(*i).second);
[1323]633      obj_const_comp=e.constComp();
[1253]634    }
[1263]635
[1312]636    ///Maximize
637    void max() { _setMax(); }
638    ///Minimize
639    void min() { _setMin(); }
640
641   
[1263]642    ///@}
643
644
[1294]645    ///\name Solve the LP
[1263]646
647    ///@{
648
649    ///\e
[1303]650    SolveExitStatus solve() { return _solve(); }
[1263]651   
652    ///@}
653   
[1294]654    ///\name Obtain the solution
[1263]655
656    ///@{
657
658    ///\e
[1312]659    SolutionStatus primalStatus() {
660      return _getPrimalStatus();
[1294]661    }
662
663    ///\e
[1293]664    Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
[1263]665
[1312]666    ///\e
667
668    ///\return
669    ///- \ref INF or -\ref INF means either infeasibility or unboundedness
670    /// of the primal problem, depending on whether we minimize or maximize.
671    ///- \ref NAN if no primal solution is found.
672    ///- The (finite) objective value if an optimal solution is found.
[1323]673    Value primalValue() { return _getPrimalValue()+obj_const_comp;}
[1263]674    ///@}
[1253]675   
[1248]676  }; 
[1246]677
[1272]678  ///\e
679 
680  ///\relates LpSolverBase::Expr
681  ///
682  inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
683                                      const LpSolverBase::Expr &b)
684  {
685    LpSolverBase::Expr tmp(a);
686    tmp+=b; ///\todo Don't STL have some special 'merge' algorithm?
687    return tmp;
688  }
689  ///\e
690 
691  ///\relates LpSolverBase::Expr
692  ///
693  inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
694                                      const LpSolverBase::Expr &b)
695  {
696    LpSolverBase::Expr tmp(a);
697    tmp-=b; ///\todo Don't STL have some special 'merge' algorithm?
698    return tmp;
699  }
700  ///\e
701 
702  ///\relates LpSolverBase::Expr
703  ///
704  inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
[1273]705                                      const LpSolverBase::Value &b)
[1272]706  {
707    LpSolverBase::Expr tmp(a);
708    tmp*=b; ///\todo Don't STL have some special 'merge' algorithm?
709    return tmp;
710  }
711 
712  ///\e
713 
714  ///\relates LpSolverBase::Expr
715  ///
[1273]716  inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
[1272]717                                      const LpSolverBase::Expr &b)
718  {
719    LpSolverBase::Expr tmp(b);
720    tmp*=a; ///\todo Don't STL have some special 'merge' algorithm?
721    return tmp;
722  }
723  ///\e
724 
725  ///\relates LpSolverBase::Expr
726  ///
727  inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
[1273]728                                      const LpSolverBase::Value &b)
[1272]729  {
730    LpSolverBase::Expr tmp(a);
731    tmp/=b; ///\todo Don't STL have some special 'merge' algorithm?
732    return tmp;
733  }
734 
735  ///\e
736 
737  ///\relates LpSolverBase::Constr
738  ///
739  inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
740                                         const LpSolverBase::Expr &f)
741  {
742    return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
743  }
744
745  ///\e
746 
747  ///\relates LpSolverBase::Constr
748  ///
[1273]749  inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
[1272]750                                         const LpSolverBase::Expr &f)
751  {
752    return LpSolverBase::Constr(e,f);
753  }
754
755  ///\e
756 
757  ///\relates LpSolverBase::Constr
758  ///
759  inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
[1273]760                                         const LpSolverBase::Value &f)
[1272]761  {
762    return LpSolverBase::Constr(e,f);
763  }
764
765  ///\e
766 
767  ///\relates LpSolverBase::Constr
768  ///
769  inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
770                                         const LpSolverBase::Expr &f)
771  {
772    return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
773  }
774
775
776  ///\e
777 
778  ///\relates LpSolverBase::Constr
779  ///
[1273]780  inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
[1272]781                                         const LpSolverBase::Expr &f)
782  {
783    return LpSolverBase::Constr(f,e);
784  }
785
786
787  ///\e
788 
789  ///\relates LpSolverBase::Constr
790  ///
791  inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
[1273]792                                         const LpSolverBase::Value &f)
[1272]793  {
794    return LpSolverBase::Constr(f,e);
795  }
796
797  ///\e
798 
799  ///\relates LpSolverBase::Constr
800  ///
801  inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
802                                         const LpSolverBase::Expr &f)
803  {
804    return LpSolverBase::Constr(0,e-f,0);
805  }
806
807  ///\e
808 
809  ///\relates LpSolverBase::Constr
810  ///
[1273]811  inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
[1272]812                                         const LpSolverBase::Constr&c)
813  {
814    LpSolverBase::Constr tmp(c);
[1273]815    ///\todo Create an own exception type.
816    if(!isnan(tmp.lowerBound())) throw LogicError();
817    else tmp.lowerBound()=n;
[1272]818    return tmp;
819  }
820  ///\e
821 
822  ///\relates LpSolverBase::Constr
823  ///
824  inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
[1273]825                                         const LpSolverBase::Value &n)
[1272]826  {
827    LpSolverBase::Constr tmp(c);
[1273]828    ///\todo Create an own exception type.
829    if(!isnan(tmp.upperBound())) throw LogicError();
830    else tmp.upperBound()=n;
[1272]831    return tmp;
832  }
833
834  ///\e
835 
836  ///\relates LpSolverBase::Constr
837  ///
[1273]838  inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
[1272]839                                         const LpSolverBase::Constr&c)
840  {
841    LpSolverBase::Constr tmp(c);
[1273]842    ///\todo Create an own exception type.
843    if(!isnan(tmp.upperBound())) throw LogicError();
844    else tmp.upperBound()=n;
[1272]845    return tmp;
846  }
847  ///\e
848 
849  ///\relates LpSolverBase::Constr
850  ///
851  inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
[1273]852                                         const LpSolverBase::Value &n)
[1272]853  {
854    LpSolverBase::Constr tmp(c);
[1273]855    ///\todo Create an own exception type.
856    if(!isnan(tmp.lowerBound())) throw LogicError();
857    else tmp.lowerBound()=n;
[1272]858    return tmp;
859  }
860
861
[1246]862} //namespace lemon
863
864#endif //LEMON_LP_BASE_H
Note: See TracBrowser for help on using the repository browser.