/* -*- C++ -*- * src/lemon/maps.h - Part of LEMON, a generic C++ optimization library * * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Combinatorial Optimization Research Group, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_MAPS_H #define LEMON_MAPS_H #include ///\file ///\ingroup maps ///\brief Miscellaneous property maps /// ///\todo This file has the same name as the concept file in concept/, /// and this is not easily detectable in docs... #include namespace lemon { /// \addtogroup maps /// @{ /// Base class of maps. /// Base class of maps. /// It provides the necessary typedefs required by the map concept. template class MapBase { public: ///\e typedef K Key; ///\e typedef T Value; }; /// Null map. (a.k.a. DoNothingMap) /// If you have to provide a map only for its type definitions, /// or if you have to provide a writable map, but /// data written to it will sent to /dev/null... template class NullMap : public MapBase { public: /// Gives back a default constructed element. T operator[](const K&) const { return T(); } /// Absorbs the value. void set(const K&, const T&) {} }; /// Constant map. /// This is a readable map which assigns a specified value to each key. /// In other aspects it is equivalent to the \ref NullMap. /// \todo set could be used to set the value. template class ConstMap : public MapBase { T v; public: /// Default constructor /// The value of the map will be uninitialized. /// (More exactly it will be default constructed.) ConstMap() {} ///\e /// \param _v The initial value of the map. /// ConstMap(const T &_v) : v(_v) {} T operator[](const K&) const { return v; } void set(const K&, const T&) {} template struct rebind { typedef ConstMap other; }; template ConstMap(const ConstMap &, const T &_v) : v(_v) {} }; ///Returns a \ref ConstMap class ///This function just returns a \ref ConstMap class. ///\relates ConstMap template inline ConstMap constMap(const K &k) { return ConstMap(k); } //to document later template struct Const { }; //to document later template class ConstMap > : public MapBase { public: ConstMap() { } V operator[](const K&) const { return v; } void set(const K&, const V&) { } }; /// \c std::map wrapper /// This is essentially a wrapper for \c std::map. With addition that /// you can specify a default value different from \c Value() . /// /// \todo Provide allocator parameter... template > class StdMap : public std::map { typedef std::map parent; T v; typedef typename parent::value_type PairType; public: typedef K Key; typedef T Value; typedef T& Reference; typedef const T& ConstReference; StdMap() : v() {} /// Constructor with specified default value StdMap(const T& _v) : v(_v) {} /// \brief Constructs the map from an appropriate std::map. /// /// \warning Inefficient: copies the content of \c m ! StdMap(const parent &m) : parent(m) {} /// \brief Constructs the map from an appropriate std::map, and explicitly /// specifies a default value. /// /// \warning Inefficient: copies the content of \c m ! StdMap(const parent &m, const T& _v) : parent(m), v(_v) {} template StdMap(const StdMap &m, const T &_v) { //FIXME; } Reference operator[](const Key &k) { return insert(PairType(k,v)).first -> second; } ConstReference operator[](const Key &k) const { typename parent::iterator i = lower_bound(k); if (i == parent::end() || parent::key_comp()(k, (*i).first)) return v; return (*i).second; } void set(const Key &k, const T &t) { parent::operator[](k) = t; } /// Changes the default value of the map. /// \return Returns the previous default value. /// /// \warning The value of some keys (which has already been queried, but /// the value has been unchanged from the default) may change! T setDefault(const T &_v) { T old=v; v=_v; return old; } template struct rebind { typedef StdMap other; }; }; ///Sum of two maps ///This \ref concept::ReadMap "read only map" returns the sum of the two ///given maps. Its \c Key and \c Value will be inherited from \c M1. ///The \c Key and \c Value of M2 must be convertible to those of \c M1. template class AddMap { const M1 &m1; const M2 &m2; public: typedef typename M1::Key Key; typedef typename M1::Value Value; ///Constructor ///\e /// AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; Value operator[](Key k) const {return m1[k]+m2[k];} }; ///Returns an \ref AddMap class ///This function just returns an \ref AddMap class. ///\todo How to call these type of functions? /// ///\relates AddMap ///\todo Wrong scope in Doxygen when \c \\relates is used template inline AddMap addMap(const M1 &m1,const M2 &m2) { return AddMap(m1,m2); } ///Shift a maps with a constant. ///This \ref concept::ReadMap "read only map" returns the sum of the ///given map and a constant value. ///Its \c Key and \c Value is inherited from \c M. /// ///Actually, ///\code /// ShiftMap sh(x,v); ///\endcode ///it is equivalent with ///\code /// ConstMap c_tmp(v); /// AddMap > sh(x,v); ///\endcode template class ShiftMap { const M &m; typename M::Value v; public: typedef typename M::Key Key; typedef typename M::Value Value; ///Constructor ///Constructor ///\param _m is the undelying map ///\param _v is the shift value ShiftMap(const M &_m,const Value &_v ) : m(_m), v(_v) {}; Value operator[](Key k) const {return m[k]+v;} }; ///Returns an \ref ShiftMap class ///This function just returns an \ref ShiftMap class. ///\relates ShiftMap ///\todo A better name is required. template inline ShiftMap shiftMap(const M &m,const typename M::Value &v) { return ShiftMap(m,v); } ///Difference of two maps ///This \ref concept::ReadMap "read only map" returns the difference ///of the values returned by the two ///given maps. Its \c Key and \c Value will be inherited from \c M1. ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. template class SubMap { const M1 &m1; const M2 &m2; public: typedef typename M1::Key Key; typedef typename M1::Value Value; ///Constructor ///\e /// SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; Value operator[](Key k) const {return m1[k]-m2[k];} }; ///Returns a \ref SubMap class ///This function just returns a \ref SubMap class. /// ///\relates SubMap template inline SubMap subMap(const M1 &m1,const M2 &m2) { return SubMap(m1,m2); } ///Product of two maps ///This \ref concept::ReadMap "read only map" returns the product of the ///values returned by the two ///given ///maps. Its \c Key and \c Value will be inherited from \c M1. ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. template class MulMap { const M1 &m1; const M2 &m2; public: typedef typename M1::Key Key; typedef typename M1::Value Value; ///Constructor ///\e /// MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; Value operator[](Key k) const {return m1[k]*m2[k];} }; ///Returns a \ref MulMap class ///This function just returns a \ref MulMap class. ///\relates MulMap template inline MulMap mulMap(const M1 &m1,const M2 &m2) { return MulMap(m1,m2); } ///Scale a maps with a constant. ///This \ref concept::ReadMap "read only map" returns the value of the ///given map multipied with a constant value. ///Its \c Key and \c Value is inherited from \c M. /// ///Actually, ///\code /// ScaleMap sc(x,v); ///\endcode ///it is equivalent with ///\code /// ConstMap c_tmp(v); /// MulMap > sc(x,v); ///\endcode template class ScaleMap { const M &m; typename M::Value v; public: typedef typename M::Key Key; typedef typename M::Value Value; ///Constructor ///Constructor ///\param _m is the undelying map ///\param _v is the scaling value ScaleMap(const M &_m,const Value &_v ) : m(_m), v(_v) {}; Value operator[](Key k) const {return m[k]*v;} }; ///Returns an \ref ScaleMap class ///This function just returns an \ref ScaleMap class. ///\relates ScaleMap ///\todo A better name is required. template inline ScaleMap scaleMap(const M &m,const typename M::Value &v) { return ScaleMap(m,v); } ///Quotient of two maps ///This \ref concept::ReadMap "read only map" returns the quotient of the ///values returned by the two ///given maps. Its \c Key and \c Value will be inherited from \c M1. ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. template class DivMap { const M1 &m1; const M2 &m2; public: typedef typename M1::Key Key; typedef typename M1::Value Value; ///Constructor ///\e /// DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; Value operator[](Key k) const {return m1[k]/m2[k];} }; ///Returns a \ref DivMap class ///This function just returns a \ref DivMap class. ///\relates DivMap template inline DivMap divMap(const M1 &m1,const M2 &m2) { return DivMap(m1,m2); } ///Composition of two maps ///This \ref concept::ReadMap "read only map" returns the composition of ///two ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is ///of \c M2, ///then for ///\code /// ComposeMap cm(m1,m2); ///\endcode /// cm[x] will be equal to m1[m2[x]] /// ///Its \c Key is inherited from \c M2 and its \c Value is from ///\c M1. ///The \c M2::Value must be convertible to \c M1::Key. ///\todo Check the requirements. template class ComposeMap { const M1 &m1; const M2 &m2; public: typedef typename M2::Key Key; typedef typename M1::Value Value; ///Constructor ///\e /// ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; Value operator[](Key k) const {return m1[m2[k]];} }; ///Returns a \ref ComposeMap class ///This function just returns a \ref ComposeMap class. ///\relates ComposeMap template inline ComposeMap composeMap(const M1 &m1,const M2 &m2) { return ComposeMap(m1,m2); } ///Negative value of a map ///This \ref concept::ReadMap "read only map" returns the negative ///value of the ///value returned by the ///given map. Its \c Key and \c Value will be inherited from \c M. ///The unary \c - operator must be defined for \c Value, of course. template class NegMap { const M &m; public: typedef typename M::Key Key; typedef typename M::Value Value; ///Constructor ///\e /// NegMap(const M &_m) : m(_m) {}; Value operator[](Key k) const {return -m[k];} }; ///Returns a \ref NegMap class ///This function just returns a \ref NegMap class. ///\relates NegMap template inline NegMap negMap(const M &m) { return NegMap(m); } ///Absolute value of a map ///This \ref concept::ReadMap "read only map" returns the absolute value ///of the ///value returned by the ///given map. Its \c Key and \c Value will be inherited ///from M. Value ///must be comparable to 0 and the unary - ///operator must be defined for it, of course. /// ///\bug We need a unified way to handle the situation below: ///\code /// struct _UnConvertible {}; /// template inline A t_abs(A a) {return _UnConvertible();} /// template<> inline int t_abs<>(int n) {return abs(n);} /// template<> inline long int t_abs<>(long int n) {return labs(n);} /// template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);} /// template<> inline float t_abs<>(float n) {return fabsf(n);} /// template<> inline double t_abs<>(double n) {return fabs(n);} /// template<> inline long double t_abs<>(long double n) {return fabsl(n);} ///\endcode template class AbsMap { const M &m; public: typedef typename M::Key Key; typedef typename M::Value Value; ///Constructor ///\e /// AbsMap(const M &_m) : m(_m) {}; Value operator[](Key k) const {Value tmp=m[k]; return tmp>=0?tmp:-tmp;} }; ///Returns a \ref AbsMap class ///This function just returns a \ref AbsMap class. ///\relates AbsMap template inline AbsMap absMap(const M &m) { return AbsMap(m); } ///Converts an STL style functor to a a map ///This \ref concept::ReadMap "read only map" returns the value ///of a ///given map. /// ///Template parameters \c K and \c V will become its ///\c Key and \c Value. They must be given explicitely ///because a functor does not provide such typedefs. /// ///Parameter \c F is the type of the used functor. template class FunctorMap { const F &f; public: typedef K Key; typedef V Value; ///Constructor ///\e /// FunctorMap(const F &_f) : f(_f) {}; Value operator[](Key k) const {return f(k);} }; ///Returns a \ref FunctorMap class ///This function just returns a \ref FunctorMap class. /// ///The third template parameter isn't necessary to be given. ///\relates FunctorMap template inline FunctorMap functorMap(const F &f) { return FunctorMap(f); } ///Converts a map to an STL style functor ///This class Converts a map to an STL style functor. ///that is it provides an operator() to read its values. /// ///For the sake of convenience it also works as a ususal map, i.e ///operator[] and the \c Key and \c Value typedefs also exist. template class MapFunctor { const M &m; public: typedef typename M::Key Key; typedef typename M::Value Value; ///Constructor ///\e /// MapFunctor(const M &_m) : m(_m) {}; ///Returns a value of the map ///\e /// Value operator()(Key k) const {return m[k];} ///\e /// Value operator[](Key k) const {return m[k];} }; ///Returns a \ref MapFunctor class ///This function just returns a \ref MapFunctor class. ///\relates MapFunctor template inline MapFunctor mapFunctor(const M &m) { return MapFunctor(m); } /// @} } #endif // LEMON_MAPS_H