/* -*- C++ -*- * src/lemon/skeletons/graph.h - Part of LEMON, a generic C++ optimization library * * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Combinatorial Optimization Research Group, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_SKELETON_GRAPH_H #define LEMON_SKELETON_GRAPH_H ///\ingroup skeletons ///\file ///\brief Declaration of Graph. #include #include namespace lemon { namespace skeleton { /// \addtogroup skeletons /// @{ /// An empty static graph class. /// This class provides all the common features of a graph structure, /// however completely without implementations and real data structures /// behind the interface. /// All graph algorithms should compile with this class, but it will not /// run properly, of course. /// /// It can be used for checking the interface compatibility, /// or it can serve as a skeleton of a new graph structure. /// /// Also, you will find here the full documentation of a certain graph /// feature, the documentation of a real graph imlementation /// like @ref ListGraph or /// @ref SmartGraph will just refer to this structure. /// /// \todo A pages describing the concept of concept description would /// be nice. class StaticGraph { public: /// Defalult constructor. /// Defalult constructor. /// StaticGraph() { } ///Copy consructor. // ///\todo It is not clear, what we expect from a copy constructor. // ///E.g. How to assign the nodes/edges to each other? What about maps? // StaticGraph(const StaticGraph& g) { } /// The base type of node iterators, /// or in other words, the trivial node iterator. /// This is the base type of each node iterator, /// thus each kind of node iterator converts to this. /// More precisely each kind of node iterator should be inherited /// from the trivial node iterator. class Node { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. Node() { } /// Copy constructor. /// Copy constructor. /// Node(const Node&) { } /// Invalid constructor \& conversion. /// This constructor initializes the iterator to be invalid. /// \sa Invalid for more details. Node(Invalid) { } /// Equality operator /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(Node) const { return true; } /// Inequality operator /// \sa operator==(Node n) /// bool operator!=(Node) const { return true; } ///Comparison operator. ///This is a strict ordering between the nodes. /// ///This ordering can be different from the order in which NodeIt ///goes through the nodes. ///\todo Possibly we don't need it. bool operator<(Node) const { return true; } }; /// This iterator goes through each node. /// This iterator goes through each node. /// Its usage is quite simple, for example you can count the number /// of nodes in graph \c g of type \c Graph like this: /// \code /// int count=0; /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; /// \endcode class NodeIt : public Node { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. NodeIt() { } /// Copy constructor. /// Copy constructor. /// NodeIt(const NodeIt&) { } /// Invalid constructor \& conversion. /// Initialize the iterator to be invalid. /// \sa Invalid for more details. NodeIt(Invalid) { } /// Sets the iterator to the first node. /// Sets the iterator to the first node of \c g. /// NodeIt(const StaticGraph& g) { } /// Node -> NodeIt conversion. /// Sets the iterator to the node of \c g pointed by the trivial /// iterator n. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. NodeIt(const StaticGraph& g, const Node& n) { } /// Next node. /// Assign the iterator to the next node. /// NodeIt& operator++() { return *this; } }; /// The base type of the edge iterators. /// The base type of the edge iterators. /// class Edge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. Edge() { } /// Copy constructor. /// Copy constructor. /// Edge(const Edge&) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// Edge(Invalid) { } /// Equality operator /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(Edge) const { return true; } /// Inequality operator /// \sa operator==(Node n) /// bool operator!=(Edge) const { return true; } ///Comparison operator. ///This is a strict ordering between the nodes. /// ///This ordering can be different from the order in which NodeIt ///goes through the nodes. ///\todo Possibly we don't need it. bool operator<(Edge) const { return true; } }; /// This iterator goes trough the outgoing edges of a node. /// This iterator goes trough the \e outgoing edges of a certain node /// of a graph. /// Its usage is quite simple, for example you can count the number /// of outgoing edges of a node \c n /// in graph \c g of type \c Graph as follows. /// \code /// int count=0; /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count; /// \endcode class OutEdgeIt : public Edge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. OutEdgeIt() { } /// Copy constructor. /// Copy constructor. /// OutEdgeIt(const OutEdgeIt&) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// OutEdgeIt(Invalid) { } /// This constructor sets the iterator to first outgoing edge. /// This constructor set the iterator to the first outgoing edge of /// node ///@param n the node ///@param g the graph OutEdgeIt(const StaticGraph& g, const Node& n) { } /// Edge -> OutEdgeIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. OutEdgeIt(const StaticGraph& g, const Edge& e) { } ///Next outgoing edge /// Assign the iterator to the next /// outgoing edge of the corresponding node. OutEdgeIt& operator++() { return *this; } }; /// This iterator goes trough the incoming edges of a node. /// This iterator goes trough the \e incoming edges of a certain node /// of a graph. /// Its usage is quite simple, for example you can count the number /// of outgoing edges of a node \c n /// in graph \c g of type \c Graph as follows. /// \code /// int count=0; /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count; /// \endcode class InEdgeIt : public Edge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. InEdgeIt() { } /// Copy constructor. /// Copy constructor. /// InEdgeIt(const InEdgeIt&) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// InEdgeIt(Invalid) { } /// This constructor sets the iterator to first incoming edge. /// This constructor set the iterator to the first incoming edge of /// node ///@param n the node ///@param g the graph InEdgeIt(const StaticGraph& g, const Node& n) { } /// Edge -> InEdgeIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. InEdgeIt(const StaticGraph& g, const Edge& n) { } /// Next incoming edge /// Assign the iterator to the next inedge of the corresponding node. /// InEdgeIt& operator++() { return *this; } }; /// This iterator goes through each edge. /// This iterator goes through each edge of a graph. /// Its usage is quite simple, for example you can count the number /// of edges in a graph \c g of type \c Graph as follows: /// \code /// int count=0; /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; /// \endcode class EdgeIt : public Edge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. EdgeIt() { } /// Copy constructor. /// Copy constructor. /// EdgeIt(const EdgeIt&) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// EdgeIt(Invalid) { } /// This constructor sets the iterator to first edge. /// This constructor set the iterator to the first edge of /// node ///@param g the graph EdgeIt(const StaticGraph& g) { } /// Edge -> EdgeIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. EdgeIt(const StaticGraph&, const Edge&) { } ///Next edge /// Assign the iterator to the next /// edge of the corresponding node. EdgeIt& operator++() { return *this; } }; /// First node of the graph. /// \retval i the first node. /// \return the first node. /// NodeIt& first(NodeIt& i) const { return i; } /// The first incoming edge. /// The first incoming edge. /// InEdgeIt& first(InEdgeIt &i, Node) const { return i; } /// The first outgoing edge. /// The first outgoing edge. /// OutEdgeIt& first(OutEdgeIt& i, Node) const { return i; } /// The first edge of the Graph. /// The first edge of the Graph. /// EdgeIt& first(EdgeIt& i) const { return i; } ///Gives back the head node of an edge. ///Gives back the head node of an edge. /// Node head(Edge) const { return INVALID; } ///Gives back the tail node of an edge. ///Gives back the tail node of an edge. /// Node tail(Edge) const { return INVALID; } ///Gives back the \e id of a node. ///\warning Not all graph structures provide this feature. /// ///\todo Should each graph provide \c id? int id(const Node&) const { return 0; } ///Gives back the \e id of an edge. ///\warning Not all graph structures provide this feature. /// ///\todo Should each graph provide \c id? int id(const Edge&) const { return 0; } ///\e ///\todo Should it be in the concept? /// int nodeNum() const { return 0; } ///\e ///\todo Should it be in the concept? /// int edgeNum() const { return 0; } ///Reference map of the nodes to type \c T. /// \ingroup skeletons ///Reference map of the nodes to type \c T. /// \sa Reference /// \warning Making maps that can handle bool type (NodeMap) /// needs some extra attention! template class NodeMap : public ReferenceMap< Node, T > { public: ///\e NodeMap(const StaticGraph&) { } ///\e NodeMap(const StaticGraph&, T) { } ///Copy constructor template NodeMap(const NodeMap&) { } ///Assignment operator template NodeMap& operator=(const NodeMap&) { return *this; } }; ///Reference map of the edges to type \c T. /// \ingroup skeletons ///Reference map of the edges to type \c T. /// \sa Reference /// \warning Making maps that can handle bool type (EdgeMap) /// needs some extra attention! template class EdgeMap : public ReferenceMap { public: ///\e EdgeMap(const StaticGraph&) { } ///\e EdgeMap(const StaticGraph&, T) { } ///Copy constructor template EdgeMap(const EdgeMap&) { } ///Assignment operator template EdgeMap &operator=(const EdgeMap&) { return *this; } }; }; struct DummyType { int value; DummyType() {} DummyType(int p) : value(p) {} DummyType& operator=(int p) { value = p; return *this;} }; ///\brief Checks whether \c G meets the ///\ref lemon::skeleton::StaticGraph "StaticGraph" concept template void checkCompileStaticGraph(Graph &G) { typedef typename Graph::Node Node; typedef typename Graph::NodeIt NodeIt; typedef typename Graph::Edge Edge; typedef typename Graph::EdgeIt EdgeIt; typedef typename Graph::InEdgeIt InEdgeIt; typedef typename Graph::OutEdgeIt OutEdgeIt; { Node i; Node j(i); Node k(INVALID); i=j; bool b; b=true; b=(i==INVALID); b=(i!=INVALID); b=(i==j); b=(i!=j); b=(iNodeIt conversion NodeIt ni(G,n); } { Edge i; Edge j(i); Edge k(INVALID); i=j; bool b; b=true; b=(i==INVALID); b=(i!=INVALID); b=(i==j); b=(i!=j); b=(iEdgeIt conversion EdgeIt ei(G,e); } { Node n; InEdgeIt i; InEdgeIt j(i); InEdgeIt k(INVALID); InEdgeIt l(G,n); i=j; j=G.first(i,n); j=++i; bool b; b=true; b=(i==INVALID); b=(i!=INVALID); Edge e(i); e=i; b=(i==j); b=(i!=j); b=(iInEdgeIt conversion InEdgeIt ei(G,e); } { Node n; OutEdgeIt i; OutEdgeIt j(i); OutEdgeIt k(INVALID); OutEdgeIt l(G,n); i=j; j=G.first(i,n); j=++i; bool b; b=true; b=(i==INVALID); b=(i!=INVALID); Edge e(i); e=i; b=(i==j); b=(i!=j); b=(iOutEdgeIt conversion OutEdgeIt ei(G,e); } { Node n,m; n=m=INVALID; Edge e; e=INVALID; n=G.tail(e); n=G.head(e); } // id tests { Node n; int i=G.id(n); i=i; } { Edge e; int i=G.id(e); i=i; } //NodeMap tests { Node k; typename Graph::template NodeMap m(G); //Const map typename Graph::template NodeMap const &cm = m; //Inicialize with default value typename Graph::template NodeMap mdef(G,12); //Copy typename Graph::template NodeMap mm(cm); //Copy from another type typename Graph::template NodeMap dm(cm); //Copy to more complex type typename Graph::template NodeMap em(cm); int v; v=m[k]; m[k]=v; m.set(k,v); v=cm[k]; m=cm; dm=cm; //Copy from another type em=cm; //Copy to more complex type { //Check the typedef's typename Graph::template NodeMap::ValueType val; val=1; typename Graph::template NodeMap::KeyType key; key = typename Graph::NodeIt(G); } } { //bool NodeMap Node k; typename Graph::template NodeMap m(G); typename Graph::template NodeMap const &cm = m; //Const map //Inicialize with default value typename Graph::template NodeMap mdef(G,12); typename Graph::template NodeMap mm(cm); //Copy typename Graph::template NodeMap dm(cm); //Copy from another type bool v; v=m[k]; m[k]=v; m.set(k,v); v=cm[k]; m=cm; dm=cm; //Copy from another type m=dm; //Copy to another type { //Check the typedef's typename Graph::template NodeMap::ValueType val; val=true; typename Graph::template NodeMap::KeyType key; key= typename Graph::NodeIt(G); } } //EdgeMap tests { Edge k; typename Graph::template EdgeMap m(G); typename Graph::template EdgeMap const &cm = m; //Const map //Inicialize with default value typename Graph::template EdgeMap mdef(G,12); typename Graph::template EdgeMap mm(cm); //Copy typename Graph::template EdgeMap dm(cm);//Copy from another type int v; v=m[k]; m[k]=v; m.set(k,v); v=cm[k]; m=cm; dm=cm; //Copy from another type { //Check the typedef's typename Graph::template EdgeMap::ValueType val; val=1; typename Graph::template EdgeMap::KeyType key; key= typename Graph::EdgeIt(G); } } { //bool EdgeMap Edge k; typename Graph::template EdgeMap m(G); typename Graph::template EdgeMap const &cm = m; //Const map //Inicialize with default value typename Graph::template EdgeMap mdef(G,12); typename Graph::template EdgeMap mm(cm); //Copy typename Graph::template EdgeMap dm(cm); //Copy from another type bool v; v=m[k]; m[k]=v; m.set(k,v); v=cm[k]; m=cm; dm=cm; //Copy from another type m=dm; //Copy to another type { //Check the typedef's typename Graph::template EdgeMap::ValueType val; val=true; typename Graph::template EdgeMap::KeyType key; key= typename Graph::EdgeIt(G); } } } /// An empty non-static graph class. /// This class provides everything that \ref StaticGraph /// with additional functionality which enables to build a /// graph from scratch. class ExtendableGraph : public StaticGraph { public: /// Defalult constructor. /// Defalult constructor. /// ExtendableGraph() { } ///Add a new node to the graph. /// \return the new node. /// Node addNode() { return INVALID; } ///Add a new edge to the graph. ///Add a new edge to the graph with tail node \c t ///and head node \c h. ///\return the new edge. Edge addEdge(Node h, Node t) { return INVALID; } /// Resets the graph. /// This function deletes all edges and nodes of the graph. /// It also frees the memory allocated to store them. /// \todo It might belong to \ref ErasableGraph. void clear() { } }; ///\brief Checks whether \c G meets the ///\ref lemon::skeleton::ExtendableGraph "ExtendableGraph" concept template void checkCompileExtendableGraph(Graph &G) { checkCompileStaticGraph(G); typedef typename Graph::Node Node; typedef typename Graph::NodeIt NodeIt; typedef typename Graph::Edge Edge; typedef typename Graph::EdgeIt EdgeIt; typedef typename Graph::InEdgeIt InEdgeIt; typedef typename Graph::OutEdgeIt OutEdgeIt; Node n,m; n=G.addNode(); m=G.addNode(); Edge e; e=G.addEdge(n,m); // G.clear(); } /// An empty erasable graph class. /// This class is an extension of \ref ExtendableGraph. It also makes it /// possible to erase edges or nodes. class ErasableGraph : public ExtendableGraph { public: /// Defalult constructor. /// Defalult constructor. /// ErasableGraph() { } /// Deletes a node. /// Deletes node \c n node. /// void erase(Node n) { } /// Deletes an edge. /// Deletes edge \c e edge. /// void erase(Edge e) { } }; template void checkCompileGraphEraseEdge(Graph &G) { typename Graph::Edge e; G.erase(e); } template void checkCompileGraphEraseNode(Graph &G) { typename Graph::Node n; G.erase(n); } ///\brief Checks whether \c G meets the ///\ref lemon::skeleton::EresableGraph "EresableGraph" concept template void checkCompileErasableGraph(Graph &G) { checkCompileExtendableGraph(G); checkCompileGraphEraseNode(G); checkCompileGraphEraseEdge(G); } ///Checks whether a graph has findEdge() member function. ///\todo findEdge() might be a global function. /// template void checkCompileGraphFindEdge(Graph &G) { typedef typename Graph::NodeIt Node; typedef typename Graph::NodeIt NodeIt; G.findEdge(NodeIt(G),++NodeIt(G),G.findEdge(NodeIt(G),++NodeIt(G))); G.findEdge(Node(),Node(),G.findEdge(Node(),Node())); } // @} } //namespace skeleton } //namespace lemon #endif // LEMON_SKELETON_GRAPH_H