1 | /* -*- C++ -*- |
---|
2 | * src/lemon/xy.h - Part of LEMON, a generic C++ optimization library |
---|
3 | * |
---|
4 | * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
5 | * (Egervary Combinatorial Optimization Research Group, EGRES). |
---|
6 | * |
---|
7 | * Permission to use, modify and distribute this software is granted |
---|
8 | * provided that this copyright notice appears in all copies. For |
---|
9 | * precise terms see the accompanying LICENSE file. |
---|
10 | * |
---|
11 | * This software is provided "AS IS" with no warranty of any kind, |
---|
12 | * express or implied, and with no claim as to its suitability for any |
---|
13 | * purpose. |
---|
14 | * |
---|
15 | */ |
---|
16 | |
---|
17 | #ifndef LEMON_XY_H |
---|
18 | #define LEMON_XY_H |
---|
19 | |
---|
20 | #include <iostream> |
---|
21 | |
---|
22 | ///\ingroup misc |
---|
23 | ///\file |
---|
24 | ///\brief A simple two dimensional vector and a bounding box implementation |
---|
25 | /// |
---|
26 | /// The class \ref lemon::xy "xy" implements |
---|
27 | ///a two dimensional vector with the usual |
---|
28 | /// operations. |
---|
29 | /// |
---|
30 | /// The class \ref lemon::BoundingBox "BoundingBox" can be used to determine |
---|
31 | /// the rectangular bounding box a set of \ref lemon::xy "xy"'s. |
---|
32 | /// |
---|
33 | ///\author Attila Bernath |
---|
34 | |
---|
35 | |
---|
36 | namespace lemon { |
---|
37 | |
---|
38 | /// \addtogroup misc |
---|
39 | /// @{ |
---|
40 | |
---|
41 | /// A two dimensional vector (plainvector) implementation |
---|
42 | |
---|
43 | /// A two dimensional vector (plainvector) implementation |
---|
44 | ///with the usual vector |
---|
45 | /// operators. |
---|
46 | /// |
---|
47 | ///\author Attila Bernath |
---|
48 | template<typename T> |
---|
49 | class xy { |
---|
50 | |
---|
51 | public: |
---|
52 | |
---|
53 | typedef T Value; |
---|
54 | |
---|
55 | T x,y; |
---|
56 | |
---|
57 | ///Default constructor: both coordinates become 0 |
---|
58 | xy() : x(0), y(0) {} |
---|
59 | |
---|
60 | ///Constructing the instance from coordinates |
---|
61 | xy(T a, T b) : x(a), y(b) { } |
---|
62 | |
---|
63 | |
---|
64 | ///Conversion constructor |
---|
65 | template<class TT> xy(const xy<TT> &p) : x(p.x), y(p.y) {} |
---|
66 | |
---|
67 | ///Gives back the square of the norm of the vector |
---|
68 | T normSquare(){ |
---|
69 | return x*x+y*y; |
---|
70 | }; |
---|
71 | |
---|
72 | ///Increments the left hand side by u |
---|
73 | xy<T>& operator +=(const xy<T>& u){ |
---|
74 | x += u.x; |
---|
75 | y += u.y; |
---|
76 | return *this; |
---|
77 | }; |
---|
78 | |
---|
79 | ///Decrements the left hand side by u |
---|
80 | xy<T>& operator -=(const xy<T>& u){ |
---|
81 | x -= u.x; |
---|
82 | y -= u.y; |
---|
83 | return *this; |
---|
84 | }; |
---|
85 | |
---|
86 | ///Multiplying the left hand side with a scalar |
---|
87 | xy<T>& operator *=(const T &u){ |
---|
88 | x *= u; |
---|
89 | y *= u; |
---|
90 | return *this; |
---|
91 | }; |
---|
92 | |
---|
93 | ///Dividing the left hand side by a scalar |
---|
94 | xy<T>& operator /=(const T &u){ |
---|
95 | x /= u; |
---|
96 | y /= u; |
---|
97 | return *this; |
---|
98 | }; |
---|
99 | |
---|
100 | ///Returns the scalar product of two vectors |
---|
101 | T operator *(const xy<T>& u){ |
---|
102 | return x*u.x+y*u.y; |
---|
103 | }; |
---|
104 | |
---|
105 | ///Returns the sum of two vectors |
---|
106 | xy<T> operator+(const xy<T> &u) const { |
---|
107 | xy<T> b=*this; |
---|
108 | return b+=u; |
---|
109 | }; |
---|
110 | |
---|
111 | ///Returns the neg of the vectors |
---|
112 | xy<T> operator-() const { |
---|
113 | xy<T> b=*this; |
---|
114 | b.x=-b.x; b.y=-b.y; |
---|
115 | return b; |
---|
116 | }; |
---|
117 | |
---|
118 | ///Returns the difference of two vectors |
---|
119 | xy<T> operator-(const xy<T> &u) const { |
---|
120 | xy<T> b=*this; |
---|
121 | return b-=u; |
---|
122 | }; |
---|
123 | |
---|
124 | ///Returns a vector multiplied by a scalar |
---|
125 | xy<T> operator*(const T &u) const { |
---|
126 | xy<T> b=*this; |
---|
127 | return b*=u; |
---|
128 | }; |
---|
129 | |
---|
130 | ///Returns a vector divided by a scalar |
---|
131 | xy<T> operator/(const T &u) const { |
---|
132 | xy<T> b=*this; |
---|
133 | return b/=u; |
---|
134 | }; |
---|
135 | |
---|
136 | ///Testing equality |
---|
137 | bool operator==(const xy<T> &u){ |
---|
138 | return (x==u.x) && (y==u.y); |
---|
139 | }; |
---|
140 | |
---|
141 | ///Testing inequality |
---|
142 | bool operator!=(xy u){ |
---|
143 | return (x!=u.x) || (y!=u.y); |
---|
144 | }; |
---|
145 | |
---|
146 | }; |
---|
147 | |
---|
148 | ///Returns a vector multiplied by a scalar |
---|
149 | template<typename T> xy<T> operator*(const T &u,const xy<T> &x) { |
---|
150 | return x*u; |
---|
151 | }; |
---|
152 | |
---|
153 | ///Read a plainvector from a stream |
---|
154 | |
---|
155 | ///Read a plainvector from a stream |
---|
156 | ///\relates xy |
---|
157 | /// |
---|
158 | template<typename T> |
---|
159 | inline |
---|
160 | std::istream& operator>>(std::istream &is, xy<T> &z) |
---|
161 | { |
---|
162 | |
---|
163 | is >> z.x >> z.y; |
---|
164 | return is; |
---|
165 | } |
---|
166 | |
---|
167 | ///Write a plainvector to a stream |
---|
168 | |
---|
169 | ///Write a plainvector to a stream |
---|
170 | ///\relates xy |
---|
171 | /// |
---|
172 | template<typename T> |
---|
173 | inline |
---|
174 | std::ostream& operator<<(std::ostream &os, xy<T> z) |
---|
175 | { |
---|
176 | os << "(" << z.x << ", " << z.y << ")"; |
---|
177 | return os; |
---|
178 | } |
---|
179 | |
---|
180 | |
---|
181 | /// A class to calculate or store the bounding box of plainvectors. |
---|
182 | |
---|
183 | /// A class to calculate or store the bounding box of plainvectors. |
---|
184 | /// |
---|
185 | ///\author Attila Bernath |
---|
186 | template<typename T> |
---|
187 | class BoundingBox { |
---|
188 | xy<T> bottom_left, top_right; |
---|
189 | bool _empty; |
---|
190 | public: |
---|
191 | |
---|
192 | ///Default constructor: an empty bounding box |
---|
193 | BoundingBox() { _empty = true; } |
---|
194 | |
---|
195 | ///Constructing the instance from one point |
---|
196 | BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; } |
---|
197 | |
---|
198 | ///Is there any point added |
---|
199 | bool empty() const { |
---|
200 | return _empty; |
---|
201 | } |
---|
202 | |
---|
203 | ///Gives back the bottom left corner (if the bounding box is empty, then the return value is not defined) |
---|
204 | xy<T> bottomLeft() const { |
---|
205 | return bottom_left; |
---|
206 | }; |
---|
207 | |
---|
208 | ///Gives back the top right corner (if the bounding box is empty, then the return value is not defined) |
---|
209 | xy<T> topRight() const { |
---|
210 | return top_right; |
---|
211 | }; |
---|
212 | |
---|
213 | ///Gives back the bottom right corner (if the bounding box is empty, then the return value is not defined) |
---|
214 | xy<T> bottomRight() const { |
---|
215 | return xy<T>(top_right.x,bottom_left.y); |
---|
216 | }; |
---|
217 | |
---|
218 | ///Gives back the top left corner (if the bounding box is empty, then the return value is not defined) |
---|
219 | xy<T> topLeft() const { |
---|
220 | return xy<T>(bottom_left.x,top_right.y); |
---|
221 | }; |
---|
222 | |
---|
223 | ///Gives back the bottom of the box (if the bounding box is empty, then the return value is not defined) |
---|
224 | T bottom() const { |
---|
225 | return bottom_left.y; |
---|
226 | }; |
---|
227 | |
---|
228 | ///Gives back the top of the box (if the bounding box is empty, then the return value is not defined) |
---|
229 | T top() const { |
---|
230 | return top_right.y; |
---|
231 | }; |
---|
232 | |
---|
233 | ///Gives back the left side of the box (if the bounding box is empty, then the return value is not defined) |
---|
234 | T left() const { |
---|
235 | return bottom_left.x; |
---|
236 | }; |
---|
237 | |
---|
238 | ///Gives back the right side of the box (if the bounding box is empty, then the return value is not defined) |
---|
239 | T right() const { |
---|
240 | return top_right.x; |
---|
241 | }; |
---|
242 | |
---|
243 | ///Checks whether a point is inside a bounding box |
---|
244 | bool inside(const xy<T>& u){ |
---|
245 | if (_empty) |
---|
246 | return false; |
---|
247 | else{ |
---|
248 | return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 && |
---|
249 | (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 ); |
---|
250 | } |
---|
251 | } |
---|
252 | |
---|
253 | ///Increments a bounding box with a point |
---|
254 | BoundingBox& operator +=(const xy<T>& u){ |
---|
255 | if (_empty){ |
---|
256 | bottom_left=top_right=u; |
---|
257 | _empty = false; |
---|
258 | } |
---|
259 | else{ |
---|
260 | if (bottom_left.x > u.x) bottom_left.x = u.x; |
---|
261 | if (bottom_left.y > u.y) bottom_left.y = u.y; |
---|
262 | if (top_right.x < u.x) top_right.x = u.x; |
---|
263 | if (top_right.y < u.y) top_right.y = u.y; |
---|
264 | } |
---|
265 | return *this; |
---|
266 | }; |
---|
267 | |
---|
268 | ///Sums a bounding box and a point |
---|
269 | BoundingBox operator +(const xy<T>& u){ |
---|
270 | BoundingBox b = *this; |
---|
271 | return b += u; |
---|
272 | }; |
---|
273 | |
---|
274 | ///Increments a bounding box with an other bounding box |
---|
275 | BoundingBox& operator +=(const BoundingBox &u){ |
---|
276 | if ( !u.empty() ){ |
---|
277 | *this += u.bottomLeft(); |
---|
278 | *this += u.topRight(); |
---|
279 | } |
---|
280 | return *this; |
---|
281 | }; |
---|
282 | |
---|
283 | ///Sums two bounding boxes |
---|
284 | BoundingBox operator +(const BoundingBox& u){ |
---|
285 | BoundingBox b = *this; |
---|
286 | return b += u; |
---|
287 | }; |
---|
288 | |
---|
289 | };//class Boundingbox |
---|
290 | |
---|
291 | |
---|
292 | /// @} |
---|
293 | |
---|
294 | |
---|
295 | } //namespace lemon |
---|
296 | |
---|
297 | #endif //LEMON_XY_H |
---|