/* -*- C++ -*- * src/test/min_cost_flow_test.cc - Part of LEMON, a generic C++ optimization library * * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Combinatorial Optimization Research Group, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #include #include "test_tools.h" #include #include //#include //#include using namespace std; using namespace lemon; bool passed = true; /* void check(bool rc, char *msg="") { passed = passed && rc; if(!rc) { std::cerr << "Test failed! ("<< msg << ")" << std::endl; \ } } */ int main() { typedef ListGraph::Node Node; typedef ListGraph::Edge Edge; ListGraph graph; //Ahuja könyv példája Node s=graph.addNode(); Node v1=graph.addNode(); Node v2=graph.addNode(); Node v3=graph.addNode(); Node v4=graph.addNode(); Node v5=graph.addNode(); Node t=graph.addNode(); Edge s_v1=graph.addEdge(s, v1); Edge v1_v2=graph.addEdge(v1, v2); Edge s_v3=graph.addEdge(s, v3); Edge v2_v4=graph.addEdge(v2, v4); Edge v2_v5=graph.addEdge(v2, v5); Edge v3_v5=graph.addEdge(v3, v5); Edge v4_t=graph.addEdge(v4, t); Edge v5_t=graph.addEdge(v5, t); ListGraph::EdgeMap length(graph); length.set(s_v1, 6); length.set(v1_v2, 4); length.set(s_v3, 10); length.set(v2_v4, 5); length.set(v2_v5, 1); length.set(v3_v5, 4); length.set(v4_t, 8); length.set(v5_t, 8); ListGraph::EdgeMap capacity(graph); capacity.set(s_v1, 2); capacity.set(v1_v2, 2); capacity.set(s_v3, 1); capacity.set(v2_v4, 1); capacity.set(v2_v5, 1); capacity.set(v3_v5, 1); capacity.set(v4_t, 1); capacity.set(v5_t, 2); // ConstMap const1map(1); std::cout << "Mincostflows algorithm test..." << std::endl; MinCostFlow< ListGraph, ListGraph::EdgeMap, ListGraph::EdgeMap > surb_test(graph, length, capacity); int k=1; check( surb_test.run(s,t,k) == 1 && surb_test.totalLength() == 19,"One path, total length should be 19"); check(surb_test.checkComplementarySlackness(), "Is the primal-dual solution pair really optimal?"); k=2; check( surb_test.run(s,t,k) == 2 && surb_test.totalLength() == 41,"Two paths, total length should be 41"); check(surb_test.checkComplementarySlackness(), "Is the primal-dual solution pair really optimal?"); k=4; check( surb_test.run(s,t,k) == 3 && surb_test.totalLength() == 64,"Three paths, total length should be 64"); check(surb_test.checkComplementarySlackness(), "Is the primal-dual solution pair really optimal?"); cout << (passed ? "All tests passed." : "Some of the tests failed!!!") << endl; return passed ? 0 : 1; }