| [610] | 1 | // -*- c++ -*- | 
|---|
| [921] | 2 | #ifndef LEMON_MINCOSTFLOW_H | 
|---|
|  | 3 | #define LEMON_MINCOSTFLOW_H | 
|---|
| [610] | 4 |  | 
|---|
|  | 5 | ///\ingroup galgs | 
|---|
|  | 6 | ///\file | 
|---|
| [645] | 7 | ///\brief An algorithm for finding the minimum cost flow of given value in an uncapacitated network | 
|---|
| [611] | 8 |  | 
|---|
| [921] | 9 | #include <lemon/dijkstra.h> | 
|---|
|  | 10 | #include <lemon/graph_wrapper.h> | 
|---|
|  | 11 | #include <lemon/maps.h> | 
|---|
| [610] | 12 | #include <vector> | 
|---|
| [657] | 13 | #include <list> | 
|---|
| [662] | 14 | #include <values.h> | 
|---|
| [921] | 15 | #include <lemon/for_each_macros.h> | 
|---|
|  | 16 | #include <lemon/unionfind.h> | 
|---|
|  | 17 | #include <lemon/bin_heap.h> | 
|---|
| [662] | 18 | #include <bfs_dfs.h> | 
|---|
| [610] | 19 |  | 
|---|
| [921] | 20 | namespace lemon { | 
|---|
| [610] | 21 |  | 
|---|
|  | 22 | /// \addtogroup galgs | 
|---|
|  | 23 | /// @{ | 
|---|
|  | 24 |  | 
|---|
| [661] | 25 | ///\brief Implementation of an algorithm for solving the minimum cost general | 
|---|
|  | 26 | /// flow problem in an uncapacitated network | 
|---|
| [610] | 27 | /// | 
|---|
|  | 28 | /// | 
|---|
| [921] | 29 | /// The class \ref lemon::MinCostFlow "MinCostFlow" implements | 
|---|
| [633] | 30 | /// an algorithm for solving the following general minimum cost flow problem> | 
|---|
|  | 31 | /// | 
|---|
|  | 32 | /// | 
|---|
|  | 33 | /// | 
|---|
|  | 34 | /// \warning It is assumed here that the problem has a feasible solution | 
|---|
|  | 35 | /// | 
|---|
| [661] | 36 | /// The range of the cost (weight) function is nonnegative reals but | 
|---|
| [610] | 37 | /// the range of capacity function is the set of nonnegative integers. | 
|---|
|  | 38 | /// It is not a polinomial time algorithm for counting the minimum cost | 
|---|
|  | 39 | /// maximal flow, since it counts the minimum cost flow for every value 0..M | 
|---|
|  | 40 | /// where \c M is the value of the maximal flow. | 
|---|
|  | 41 | /// | 
|---|
|  | 42 | ///\author Attila Bernath | 
|---|
| [661] | 43 | template <typename Graph, typename CostMap, typename SupplyDemandMap> | 
|---|
| [633] | 44 | class MinCostFlow { | 
|---|
| [610] | 45 |  | 
|---|
| [987] | 46 | typedef typename CostMap::Value Cost; | 
|---|
| [610] | 47 |  | 
|---|
| [633] | 48 |  | 
|---|
| [987] | 49 | typedef typename SupplyDemandMap::Value SupplyDemand; | 
|---|
| [610] | 50 |  | 
|---|
|  | 51 | typedef typename Graph::Node Node; | 
|---|
|  | 52 | typedef typename Graph::NodeIt NodeIt; | 
|---|
|  | 53 | typedef typename Graph::Edge Edge; | 
|---|
|  | 54 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| [661] | 55 | typedef typename Graph::template EdgeMap<SupplyDemand> FlowMap; | 
|---|
|  | 56 | typedef ConstMap<Edge,SupplyDemand> ConstEdgeMap; | 
|---|
| [610] | 57 |  | 
|---|
|  | 58 | //    typedef ConstMap<Edge,int> ConstMap; | 
|---|
|  | 59 |  | 
|---|
| [661] | 60 | typedef ResGraphWrapper<const Graph,int,ConstEdgeMap,FlowMap> ResGraph; | 
|---|
|  | 61 | typedef typename ResGraph::Edge ResGraphEdge; | 
|---|
| [610] | 62 |  | 
|---|
| [661] | 63 | class ModCostMap { | 
|---|
|  | 64 | //typedef typename ResGraph::template NodeMap<Cost> NodeMap; | 
|---|
|  | 65 | typedef typename Graph::template NodeMap<Cost> NodeMap; | 
|---|
|  | 66 | const ResGraph& res_graph; | 
|---|
| [610] | 67 | //      const EdgeIntMap& rev; | 
|---|
| [661] | 68 | const CostMap &ol; | 
|---|
| [610] | 69 | const NodeMap &pot; | 
|---|
|  | 70 | public : | 
|---|
| [987] | 71 | typedef typename CostMap::Key Key; | 
|---|
|  | 72 | typedef typename CostMap::Value Value; | 
|---|
| [610] | 73 |  | 
|---|
| [987] | 74 | Value operator[](typename ResGraph::Edge e) const { | 
|---|
| [659] | 75 | if (res_graph.forward(e)) | 
|---|
| [986] | 76 | return  ol[e]-(pot[res_graph.target(e)]-pot[res_graph.source(e)]); | 
|---|
| [610] | 77 | else | 
|---|
| [986] | 78 | return -ol[e]-(pot[res_graph.target(e)]-pot[res_graph.source(e)]); | 
|---|
| [610] | 79 | } | 
|---|
|  | 80 |  | 
|---|
| [661] | 81 | ModCostMap(const ResGraph& _res_graph, | 
|---|
|  | 82 | const CostMap &o,  const NodeMap &p) : | 
|---|
| [659] | 83 | res_graph(_res_graph), /*rev(_rev),*/ ol(o), pot(p){}; | 
|---|
| [661] | 84 | };//ModCostMap | 
|---|
| [610] | 85 |  | 
|---|
|  | 86 |  | 
|---|
|  | 87 | protected: | 
|---|
|  | 88 |  | 
|---|
|  | 89 | //Input | 
|---|
| [659] | 90 | const Graph& graph; | 
|---|
| [661] | 91 | const CostMap& cost; | 
|---|
| [635] | 92 | const SupplyDemandMap& supply_demand;//supply or demand of nodes | 
|---|
| [610] | 93 |  | 
|---|
|  | 94 |  | 
|---|
|  | 95 | //auxiliary variables | 
|---|
|  | 96 |  | 
|---|
|  | 97 | //To store the flow | 
|---|
| [661] | 98 | FlowMap flow; | 
|---|
| [662] | 99 | //To store the potential (dual variables) | 
|---|
|  | 100 | typedef typename Graph::template NodeMap<Cost> PotentialMap; | 
|---|
|  | 101 | PotentialMap potential; | 
|---|
| [610] | 102 |  | 
|---|
|  | 103 |  | 
|---|
| [661] | 104 | Cost total_cost; | 
|---|
| [610] | 105 |  | 
|---|
|  | 106 |  | 
|---|
|  | 107 | public : | 
|---|
|  | 108 |  | 
|---|
|  | 109 |  | 
|---|
| [662] | 110 | MinCostFlow(Graph& _graph, CostMap& _cost, SupplyDemandMap& _supply_demand): | 
|---|
|  | 111 | graph(_graph), | 
|---|
|  | 112 | cost(_cost), | 
|---|
|  | 113 | supply_demand(_supply_demand), | 
|---|
|  | 114 | flow(_graph), | 
|---|
| [672] | 115 | potential(_graph){ } | 
|---|
| [610] | 116 |  | 
|---|
|  | 117 |  | 
|---|
|  | 118 | ///Runs the algorithm. | 
|---|
|  | 119 |  | 
|---|
|  | 120 | ///Runs the algorithm. | 
|---|
| [635] | 121 |  | 
|---|
| [610] | 122 | ///\todo May be it does make sense to be able to start with a nonzero | 
|---|
|  | 123 | /// feasible primal-dual solution pair as well. | 
|---|
| [659] | 124 | void run() { | 
|---|
| [610] | 125 |  | 
|---|
| [672] | 126 | //To store excess-deficit values | 
|---|
|  | 127 | SupplyDemandMap excess_deficit(graph); | 
|---|
|  | 128 |  | 
|---|
| [610] | 129 | //Resetting variables from previous runs | 
|---|
| [661] | 130 | //total_cost = 0; | 
|---|
| [635] | 131 |  | 
|---|
| [672] | 132 |  | 
|---|
| [635] | 133 | typedef typename Graph::template NodeMap<int> HeapMap; | 
|---|
| [662] | 134 | typedef BinHeap< Node, SupplyDemand, typename Graph::template NodeMap<int>, | 
|---|
| [635] | 135 | std::greater<SupplyDemand> >    HeapType; | 
|---|
|  | 136 |  | 
|---|
|  | 137 | //A heap for the excess nodes | 
|---|
| [659] | 138 | HeapMap excess_nodes_map(graph,-1); | 
|---|
| [635] | 139 | HeapType excess_nodes(excess_nodes_map); | 
|---|
|  | 140 |  | 
|---|
|  | 141 | //A heap for the deficit nodes | 
|---|
| [659] | 142 | HeapMap deficit_nodes_map(graph,-1); | 
|---|
| [635] | 143 | HeapType deficit_nodes(deficit_nodes_map); | 
|---|
|  | 144 |  | 
|---|
| [657] | 145 | //A container to store nonabundant arcs | 
|---|
| [662] | 146 | std::list<Edge> nonabundant_arcs; | 
|---|
| [659] | 147 |  | 
|---|
|  | 148 |  | 
|---|
|  | 149 | FOR_EACH_LOC(typename Graph::EdgeIt, e, graph){ | 
|---|
| [610] | 150 | flow.set(e,0); | 
|---|
| [657] | 151 | nonabundant_arcs.push_back(e); | 
|---|
| [610] | 152 | } | 
|---|
| [633] | 153 |  | 
|---|
|  | 154 | //Initial value for delta | 
|---|
| [635] | 155 | SupplyDemand delta = 0; | 
|---|
|  | 156 |  | 
|---|
| [657] | 157 | typedef UnionFindEnum<Node, Graph::template NodeMap> UFE; | 
|---|
|  | 158 |  | 
|---|
|  | 159 | //A union-find structure to store the abundant components | 
|---|
| [662] | 160 | typename UFE::MapType abund_comp_map(graph); | 
|---|
| [657] | 161 | UFE abundant_components(abund_comp_map); | 
|---|
|  | 162 |  | 
|---|
|  | 163 |  | 
|---|
|  | 164 |  | 
|---|
| [659] | 165 | FOR_EACH_LOC(typename Graph::NodeIt, n, graph){ | 
|---|
| [635] | 166 | excess_deficit.set(n,supply_demand[n]); | 
|---|
|  | 167 | //A supply node | 
|---|
|  | 168 | if (excess_deficit[n] > 0){ | 
|---|
|  | 169 | excess_nodes.push(n,excess_deficit[n]); | 
|---|
| [633] | 170 | } | 
|---|
| [635] | 171 | //A demand node | 
|---|
|  | 172 | if (excess_deficit[n] < 0){ | 
|---|
|  | 173 | deficit_nodes.push(n, - excess_deficit[n]); | 
|---|
|  | 174 | } | 
|---|
|  | 175 | //Finding out starting value of delta | 
|---|
|  | 176 | if (delta < abs(excess_deficit[n])){ | 
|---|
|  | 177 | delta = abs(excess_deficit[n]); | 
|---|
|  | 178 | } | 
|---|
| [633] | 179 | //Initialize the copy of the Dijkstra potential to zero | 
|---|
| [610] | 180 | potential.set(n,0); | 
|---|
| [657] | 181 | //Every single point is an abundant component initially | 
|---|
|  | 182 | abundant_components.insert(n); | 
|---|
| [610] | 183 | } | 
|---|
|  | 184 |  | 
|---|
| [635] | 185 | //It'll be allright as an initial value, though this value | 
|---|
|  | 186 | //can be the maximum deficit here | 
|---|
|  | 187 | SupplyDemand max_excess = delta; | 
|---|
| [610] | 188 |  | 
|---|
| [661] | 189 | ///\bug This is a serious cheat here, before we have an uncapacitated ResGraph | 
|---|
| [662] | 190 | ConstEdgeMap const_inf_map(MAXINT); | 
|---|
| [661] | 191 |  | 
|---|
| [633] | 192 | //We need a residual graph which is uncapacitated | 
|---|
| [661] | 193 | ResGraph res_graph(graph, const_inf_map, flow); | 
|---|
| [659] | 194 |  | 
|---|
|  | 195 | //An EdgeMap to tell which arcs are abundant | 
|---|
| [662] | 196 | typename Graph::template EdgeMap<bool> abundant_arcs(graph); | 
|---|
| [610] | 197 |  | 
|---|
| [659] | 198 | //Let's construct the sugraph consisting only of the abundant edges | 
|---|
|  | 199 | typedef ConstMap< typename Graph::Node, bool > ConstNodeMap; | 
|---|
| [672] | 200 |  | 
|---|
| [659] | 201 | ConstNodeMap const_true_map(true); | 
|---|
| [662] | 202 | typedef SubGraphWrapper< const Graph, ConstNodeMap, | 
|---|
|  | 203 | typename Graph::template EdgeMap<bool> > | 
|---|
| [659] | 204 | AbundantGraph; | 
|---|
|  | 205 | AbundantGraph abundant_graph(graph, const_true_map, abundant_arcs ); | 
|---|
|  | 206 |  | 
|---|
|  | 207 | //Let's construct the residual graph for the abundant graph | 
|---|
| [662] | 208 | typedef ResGraphWrapper<const AbundantGraph,int,ConstEdgeMap,FlowMap> | 
|---|
| [659] | 209 | ResAbGraph; | 
|---|
|  | 210 | //Again uncapacitated | 
|---|
| [661] | 211 | ResAbGraph res_ab_graph(abundant_graph, const_inf_map, flow); | 
|---|
| [659] | 212 |  | 
|---|
|  | 213 | //We need things for the bfs | 
|---|
| [662] | 214 | typename ResAbGraph::template NodeMap<bool> bfs_reached(res_ab_graph); | 
|---|
|  | 215 | typename ResAbGraph::template NodeMap<typename ResAbGraph::Edge> | 
|---|
| [659] | 216 | bfs_pred(res_ab_graph); | 
|---|
| [662] | 217 | NullMap<typename ResAbGraph::Node, int> bfs_dist_dummy; | 
|---|
| [671] | 218 | //Teszt celbol: | 
|---|
|  | 219 | //BfsIterator<ResAbGraph, typename ResAbGraph::template NodeMap<bool> > | 
|---|
|  | 220 | //izebize(res_ab_graph, bfs_reached); | 
|---|
| [659] | 221 | //We want to run bfs-es (more) on this graph 'res_ab_graph' | 
|---|
| [671] | 222 | Bfs < const ResAbGraph , | 
|---|
| [662] | 223 | typename ResAbGraph::template NodeMap<bool>, | 
|---|
|  | 224 | typename ResAbGraph::template NodeMap<typename ResAbGraph::Edge>, | 
|---|
| [659] | 225 | NullMap<typename ResAbGraph::Node, int> > | 
|---|
|  | 226 | bfs(res_ab_graph, bfs_reached, bfs_pred, bfs_dist_dummy); | 
|---|
| [662] | 227 | /*This is what Marci wants for a bfs | 
|---|
|  | 228 | template <typename Graph, | 
|---|
|  | 229 | typename ReachedMap=typename Graph::template NodeMap<bool>, | 
|---|
|  | 230 | typename PredMap | 
|---|
|  | 231 | =typename Graph::template NodeMap<typename Graph::Edge>, | 
|---|
|  | 232 | typename DistMap=typename Graph::template NodeMap<int> > | 
|---|
|  | 233 | class Bfs : public BfsIterator<Graph, ReachedMap> { | 
|---|
|  | 234 |  | 
|---|
|  | 235 | */ | 
|---|
| [610] | 236 |  | 
|---|
| [661] | 237 | ModCostMap mod_cost(res_graph, cost, potential); | 
|---|
| [610] | 238 |  | 
|---|
| [661] | 239 | Dijkstra<ResGraph, ModCostMap> dijkstra(res_graph, mod_cost); | 
|---|
| [610] | 240 |  | 
|---|
| [671] | 241 | //We will use the number of the nodes of the graph often | 
|---|
|  | 242 | int number_of_nodes = graph.nodeNum(); | 
|---|
| [633] | 243 |  | 
|---|
| [635] | 244 | while (max_excess > 0){ | 
|---|
|  | 245 |  | 
|---|
| [657] | 246 | //Reset delta if still too big | 
|---|
|  | 247 | if (8*number_of_nodes*max_excess <= delta){ | 
|---|
|  | 248 | delta = max_excess; | 
|---|
|  | 249 |  | 
|---|
|  | 250 | } | 
|---|
|  | 251 |  | 
|---|
| [645] | 252 | /* | 
|---|
|  | 253 | * Beginning of the delta scaling phase | 
|---|
|  | 254 | */ | 
|---|
| [635] | 255 | //Merge and stuff | 
|---|
| [657] | 256 | { | 
|---|
|  | 257 | SupplyDemand buf=8*number_of_nodes*delta; | 
|---|
| [662] | 258 | typename std::list<Edge>::iterator i = nonabundant_arcs.begin(); | 
|---|
| [657] | 259 | while ( i != nonabundant_arcs.end() ){ | 
|---|
| [671] | 260 | if (flow[*i]>=buf){ | 
|---|
| [986] | 261 | Node a = abundant_components.find(res_graph.target(*i)); | 
|---|
|  | 262 | Node b = abundant_components.find(res_graph.source(*i)); | 
|---|
| [657] | 263 | //Merge | 
|---|
|  | 264 | if (a != b){ | 
|---|
|  | 265 | abundant_components.join(a,b); | 
|---|
| [659] | 266 | //We want to push the smaller | 
|---|
|  | 267 | //Which has greater absolut value excess/deficit | 
|---|
|  | 268 | Node root=(abs(excess_deficit[a])>abs(excess_deficit[b]))?a:b; | 
|---|
|  | 269 | //Which is the other | 
|---|
|  | 270 | Node non_root = ( a == root ) ? b : a ; | 
|---|
|  | 271 | abundant_components.makeRep(root); | 
|---|
|  | 272 | SupplyDemand qty_to_augment = abs(excess_deficit[non_root]); | 
|---|
|  | 273 | //Push the positive value | 
|---|
|  | 274 | if (excess_deficit[non_root] < 0) | 
|---|
|  | 275 | swap(root, non_root); | 
|---|
|  | 276 | //If the non_root node has excess/deficit at all | 
|---|
|  | 277 | if (qty_to_augment>0){ | 
|---|
|  | 278 | //Find path and augment | 
|---|
| [671] | 279 | bfs.run(typename AbundantGraph::Node(non_root)); | 
|---|
| [659] | 280 | //root should be reached | 
|---|
|  | 281 |  | 
|---|
|  | 282 | //Augmenting on the found path | 
|---|
|  | 283 | Node n=root; | 
|---|
|  | 284 | ResGraphEdge e; | 
|---|
|  | 285 | while (n!=non_root){ | 
|---|
| [671] | 286 | e = bfs_pred[n]; | 
|---|
| [986] | 287 | n = res_graph.source(e); | 
|---|
| [659] | 288 | res_graph.augment(e,qty_to_augment); | 
|---|
|  | 289 | } | 
|---|
|  | 290 |  | 
|---|
|  | 291 | //We know that non_root had positive excess | 
|---|
| [671] | 292 | excess_nodes.set(non_root, | 
|---|
|  | 293 | excess_nodes[non_root] - qty_to_augment); | 
|---|
| [659] | 294 | //But what about root node | 
|---|
|  | 295 | //It might have been positive and so became larger | 
|---|
|  | 296 | if (excess_deficit[root]>0){ | 
|---|
| [671] | 297 | excess_nodes.set(root, | 
|---|
|  | 298 | excess_nodes[root] + qty_to_augment); | 
|---|
| [659] | 299 | } | 
|---|
|  | 300 | else{ | 
|---|
|  | 301 | //Or negative but not turned into positive | 
|---|
| [671] | 302 | deficit_nodes.set(root, | 
|---|
|  | 303 | deficit_nodes[root] - qty_to_augment); | 
|---|
| [659] | 304 | } | 
|---|
|  | 305 |  | 
|---|
|  | 306 | //Update the excess_deficit map | 
|---|
|  | 307 | excess_deficit[non_root] -= qty_to_augment; | 
|---|
|  | 308 | excess_deficit[root] += qty_to_augment; | 
|---|
|  | 309 |  | 
|---|
|  | 310 |  | 
|---|
|  | 311 | } | 
|---|
| [657] | 312 | } | 
|---|
|  | 313 | //What happens to i? | 
|---|
| [659] | 314 | //Marci and Zsolt says I shouldn't do such things | 
|---|
|  | 315 | nonabundant_arcs.erase(i++); | 
|---|
| [671] | 316 | abundant_arcs[*i] = true; | 
|---|
| [657] | 317 | } | 
|---|
|  | 318 | else | 
|---|
|  | 319 | ++i; | 
|---|
|  | 320 | } | 
|---|
|  | 321 | } | 
|---|
|  | 322 |  | 
|---|
| [635] | 323 |  | 
|---|
|  | 324 | Node s = excess_nodes.top(); | 
|---|
| [672] | 325 | max_excess = excess_nodes[s]; | 
|---|
| [635] | 326 | Node t = deficit_nodes.top(); | 
|---|
| [659] | 327 | if (max_excess < deficit_nodes[t]){ | 
|---|
|  | 328 | max_excess = deficit_nodes[t]; | 
|---|
| [635] | 329 | } | 
|---|
|  | 330 |  | 
|---|
|  | 331 |  | 
|---|
| [662] | 332 | while(max_excess > (number_of_nodes-1)*delta/number_of_nodes){ | 
|---|
| [659] | 333 |  | 
|---|
| [635] | 334 |  | 
|---|
|  | 335 | //s es t valasztasa | 
|---|
| [659] | 336 |  | 
|---|
| [635] | 337 | //Dijkstra part | 
|---|
|  | 338 | dijkstra.run(s); | 
|---|
| [659] | 339 |  | 
|---|
| [635] | 340 | /*We know from theory that t can be reached | 
|---|
|  | 341 | if (!dijkstra.reached(t)){ | 
|---|
|  | 342 | //There are no k paths from s to t | 
|---|
|  | 343 | break; | 
|---|
|  | 344 | }; | 
|---|
|  | 345 | */ | 
|---|
|  | 346 |  | 
|---|
|  | 347 | //We have to change the potential | 
|---|
| [661] | 348 | FOR_EACH_LOC(typename ResGraph::NodeIt, n, res_graph){ | 
|---|
| [635] | 349 | potential[n] += dijkstra.distMap()[n]; | 
|---|
|  | 350 | } | 
|---|
|  | 351 |  | 
|---|
|  | 352 |  | 
|---|
|  | 353 | //Augmenting on the sortest path | 
|---|
|  | 354 | Node n=t; | 
|---|
|  | 355 | ResGraphEdge e; | 
|---|
|  | 356 | while (n!=s){ | 
|---|
|  | 357 | e = dijkstra.pred(n); | 
|---|
|  | 358 | n = dijkstra.predNode(n); | 
|---|
|  | 359 | res_graph.augment(e,delta); | 
|---|
|  | 360 | /* | 
|---|
| [661] | 361 | //Let's update the total cost | 
|---|
| [635] | 362 | if (res_graph.forward(e)) | 
|---|
| [661] | 363 | total_cost += cost[e]; | 
|---|
| [635] | 364 | else | 
|---|
| [661] | 365 | total_cost -= cost[e]; | 
|---|
| [635] | 366 | */ | 
|---|
|  | 367 | } | 
|---|
| [659] | 368 |  | 
|---|
|  | 369 | //Update the excess_deficit map | 
|---|
|  | 370 | excess_deficit[s] -= delta; | 
|---|
|  | 371 | excess_deficit[t] += delta; | 
|---|
|  | 372 |  | 
|---|
| [635] | 373 |  | 
|---|
|  | 374 | //Update the excess_nodes heap | 
|---|
| [672] | 375 | if (delta > excess_nodes[s]){ | 
|---|
| [635] | 376 | if (delta > excess_nodes[s]) | 
|---|
|  | 377 | deficit_nodes.push(s,delta - excess_nodes[s]); | 
|---|
|  | 378 | excess_nodes.pop(); | 
|---|
|  | 379 |  | 
|---|
|  | 380 | } | 
|---|
|  | 381 | else{ | 
|---|
| [671] | 382 | excess_nodes.set(s, excess_nodes[s] - delta); | 
|---|
| [635] | 383 | } | 
|---|
|  | 384 | //Update the deficit_nodes heap | 
|---|
| [672] | 385 | if (delta > deficit_nodes[t]){ | 
|---|
| [635] | 386 | if (delta > deficit_nodes[t]) | 
|---|
|  | 387 | excess_nodes.push(t,delta - deficit_nodes[t]); | 
|---|
|  | 388 | deficit_nodes.pop(); | 
|---|
|  | 389 |  | 
|---|
|  | 390 | } | 
|---|
|  | 391 | else{ | 
|---|
| [671] | 392 | deficit_nodes.set(t, deficit_nodes[t] - delta); | 
|---|
| [635] | 393 | } | 
|---|
|  | 394 | //Dijkstra part ends here | 
|---|
| [659] | 395 |  | 
|---|
|  | 396 | //Choose s and t again | 
|---|
|  | 397 | s = excess_nodes.top(); | 
|---|
|  | 398 | max_excess = excess_nodes[s]; | 
|---|
|  | 399 | t = deficit_nodes.top(); | 
|---|
|  | 400 | if (max_excess < deficit_nodes[t]){ | 
|---|
|  | 401 | max_excess = deficit_nodes[t]; | 
|---|
|  | 402 | } | 
|---|
|  | 403 |  | 
|---|
| [633] | 404 | } | 
|---|
|  | 405 |  | 
|---|
|  | 406 | /* | 
|---|
| [635] | 407 | * End of the delta scaling phase | 
|---|
|  | 408 | */ | 
|---|
| [633] | 409 |  | 
|---|
| [635] | 410 | //Whatever this means | 
|---|
|  | 411 | delta = delta / 2; | 
|---|
|  | 412 |  | 
|---|
|  | 413 | /*This is not necessary here | 
|---|
|  | 414 | //Update the max_excess | 
|---|
|  | 415 | max_excess = 0; | 
|---|
| [659] | 416 | FOR_EACH_LOC(typename Graph::NodeIt, n, graph){ | 
|---|
| [635] | 417 | if (max_excess < excess_deficit[n]){ | 
|---|
|  | 418 | max_excess = excess_deficit[n]; | 
|---|
| [610] | 419 | } | 
|---|
|  | 420 | } | 
|---|
| [633] | 421 | */ | 
|---|
| [657] | 422 |  | 
|---|
| [610] | 423 |  | 
|---|
| [635] | 424 | }//while(max_excess > 0) | 
|---|
| [610] | 425 |  | 
|---|
|  | 426 |  | 
|---|
| [671] | 427 | //return i; | 
|---|
| [610] | 428 | } | 
|---|
|  | 429 |  | 
|---|
|  | 430 |  | 
|---|
|  | 431 |  | 
|---|
|  | 432 |  | 
|---|
| [661] | 433 | ///This function gives back the total cost of the found paths. | 
|---|
| [610] | 434 | ///Assumes that \c run() has been run and nothing changed since then. | 
|---|
| [661] | 435 | Cost totalCost(){ | 
|---|
|  | 436 | return total_cost; | 
|---|
| [610] | 437 | } | 
|---|
|  | 438 |  | 
|---|
|  | 439 | ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must | 
|---|
|  | 440 | ///be called before using this function. | 
|---|
| [662] | 441 | const FlowMap &getFlow() const { return flow;} | 
|---|
| [610] | 442 |  | 
|---|
|  | 443 | ///Returns a const reference to the NodeMap \c potential (the dual solution). | 
|---|
|  | 444 | /// \pre \ref run() must be called before using this function. | 
|---|
| [662] | 445 | const PotentialMap &getPotential() const { return potential;} | 
|---|
| [610] | 446 |  | 
|---|
|  | 447 | ///This function checks, whether the given solution is optimal | 
|---|
|  | 448 | ///Running after a \c run() should return with true | 
|---|
| [672] | 449 | ///In this "state of the art" this only checks optimality, doesn't bother with feasibility | 
|---|
| [610] | 450 | /// | 
|---|
|  | 451 | ///\todo Is this OK here? | 
|---|
|  | 452 | bool checkComplementarySlackness(){ | 
|---|
| [661] | 453 | Cost mod_pot; | 
|---|
|  | 454 | Cost fl_e; | 
|---|
| [659] | 455 | FOR_EACH_LOC(typename Graph::EdgeIt, e, graph){ | 
|---|
| [610] | 456 | //C^{\Pi}_{i,j} | 
|---|
| [986] | 457 | mod_pot = cost[e]-potential[graph.target(e)]+potential[graph.source(e)]; | 
|---|
| [610] | 458 | fl_e = flow[e]; | 
|---|
|  | 459 | //      std::cout << fl_e << std::endl; | 
|---|
| [672] | 460 | if (mod_pot > 0 && fl_e != 0) | 
|---|
|  | 461 | return false; | 
|---|
|  | 462 |  | 
|---|
| [610] | 463 | } | 
|---|
|  | 464 | return true; | 
|---|
|  | 465 | } | 
|---|
| [672] | 466 |  | 
|---|
|  | 467 | /* | 
|---|
|  | 468 | //For testing purposes only | 
|---|
|  | 469 | //Lists the node_properties | 
|---|
|  | 470 | void write_property_vector(const SupplyDemandMap& a, | 
|---|
|  | 471 | char* prop_name="property"){ | 
|---|
|  | 472 | FOR_EACH_LOC(typename Graph::NodeIt, i, graph){ | 
|---|
|  | 473 | cout<<"Node id.: "<<graph.id(i)<<", "<<prop_name<<" value: "<<a[i]<<endl; | 
|---|
|  | 474 | } | 
|---|
|  | 475 | cout<<endl; | 
|---|
|  | 476 | } | 
|---|
|  | 477 | */ | 
|---|
|  | 478 | bool checkFeasibility(){ | 
|---|
|  | 479 | SupplyDemandMap supdem(graph); | 
|---|
|  | 480 | FOR_EACH_LOC(typename Graph::EdgeIt, e, graph){ | 
|---|
|  | 481 |  | 
|---|
|  | 482 | if ( flow[e] < 0){ | 
|---|
|  | 483 |  | 
|---|
|  | 484 | return false; | 
|---|
|  | 485 | } | 
|---|
| [986] | 486 | supdem[graph.source(e)] += flow[e]; | 
|---|
|  | 487 | supdem[graph.target(e)] -= flow[e]; | 
|---|
| [672] | 488 | } | 
|---|
|  | 489 | //write_property_vector(supdem, "supdem"); | 
|---|
|  | 490 | //write_property_vector(supply_demand, "supply_demand"); | 
|---|
|  | 491 |  | 
|---|
|  | 492 | FOR_EACH_LOC(typename Graph::NodeIt, n, graph){ | 
|---|
|  | 493 |  | 
|---|
|  | 494 | if ( supdem[n] != supply_demand[n]){ | 
|---|
|  | 495 | //cout<<"Node id.: "<<graph.id(n)<<" : "<<supdem[n]<<", should be: "<<supply_demand[n]<<endl; | 
|---|
|  | 496 | return false; | 
|---|
|  | 497 | } | 
|---|
|  | 498 | } | 
|---|
|  | 499 |  | 
|---|
|  | 500 | return true; | 
|---|
|  | 501 | } | 
|---|
|  | 502 |  | 
|---|
|  | 503 | bool checkOptimality(){ | 
|---|
|  | 504 | return checkFeasibility() && checkComplementarySlackness(); | 
|---|
|  | 505 | } | 
|---|
| [610] | 506 |  | 
|---|
| [633] | 507 | }; //class MinCostFlow | 
|---|
| [610] | 508 |  | 
|---|
|  | 509 | ///@} | 
|---|
|  | 510 |  | 
|---|
| [921] | 511 | } //namespace lemon | 
|---|
| [610] | 512 |  | 
|---|
| [921] | 513 | #endif //LEMON_MINCOSTFLOW_H | 
|---|