| 1 | // -*- c++ -*- | 
|---|
| 2 | #ifndef HUGO_MINCOSTFLOW_H | 
|---|
| 3 | #define HUGO_MINCOSTFLOW_H | 
|---|
| 4 |  | 
|---|
| 5 | ///\ingroup galgs | 
|---|
| 6 | ///\file | 
|---|
| 7 | ///\brief An algorithm for finding the minimum cost flow of given value in an uncapacitated network | 
|---|
| 8 |  | 
|---|
| 9 | #include <hugo/dijkstra.h> | 
|---|
| 10 | #include <hugo/graph_wrapper.h> | 
|---|
| 11 | #include <hugo/maps.h> | 
|---|
| 12 | #include <vector> | 
|---|
| 13 | #include <for_each_macros.h> | 
|---|
| 14 |  | 
|---|
| 15 | namespace hugo { | 
|---|
| 16 |  | 
|---|
| 17 | /// \addtogroup galgs | 
|---|
| 18 | /// @{ | 
|---|
| 19 |  | 
|---|
| 20 | ///\brief Implementation of an algorithm for finding the minimum cost flow | 
|---|
| 21 | /// of given value in an uncapacitated network | 
|---|
| 22 | /// | 
|---|
| 23 | /// | 
|---|
| 24 | /// The class \ref hugo::MinCostFlow "MinCostFlow" implements | 
|---|
| 25 | /// an algorithm for solving the following general minimum cost flow problem> | 
|---|
| 26 | /// | 
|---|
| 27 | /// | 
|---|
| 28 | /// | 
|---|
| 29 | /// \warning It is assumed here that the problem has a feasible solution | 
|---|
| 30 | /// | 
|---|
| 31 | /// The range of the length (weight) function is nonnegative reals but | 
|---|
| 32 | /// the range of capacity function is the set of nonnegative integers. | 
|---|
| 33 | /// It is not a polinomial time algorithm for counting the minimum cost | 
|---|
| 34 | /// maximal flow, since it counts the minimum cost flow for every value 0..M | 
|---|
| 35 | /// where \c M is the value of the maximal flow. | 
|---|
| 36 | /// | 
|---|
| 37 | ///\author Attila Bernath | 
|---|
| 38 | template <typename Graph, typename LengthMap, typename SupplyDemandMap> | 
|---|
| 39 | class MinCostFlow { | 
|---|
| 40 |  | 
|---|
| 41 | typedef typename LengthMap::ValueType Length; | 
|---|
| 42 |  | 
|---|
| 43 |  | 
|---|
| 44 | typedef typename SupplyDemandMap::ValueType SupplyDemand; | 
|---|
| 45 |  | 
|---|
| 46 | typedef typename Graph::Node Node; | 
|---|
| 47 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 48 | typedef typename Graph::Edge Edge; | 
|---|
| 49 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 50 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; | 
|---|
| 51 |  | 
|---|
| 52 | //    typedef ConstMap<Edge,int> ConstMap; | 
|---|
| 53 |  | 
|---|
| 54 | typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType; | 
|---|
| 55 | typedef typename ResGraphType::Edge ResGraphEdge; | 
|---|
| 56 |  | 
|---|
| 57 | class ModLengthMap { | 
|---|
| 58 | //typedef typename ResGraphType::template NodeMap<Length> NodeMap; | 
|---|
| 59 | typedef typename Graph::template NodeMap<Length> NodeMap; | 
|---|
| 60 | const ResGraphType& G; | 
|---|
| 61 | //      const EdgeIntMap& rev; | 
|---|
| 62 | const LengthMap &ol; | 
|---|
| 63 | const NodeMap &pot; | 
|---|
| 64 | public : | 
|---|
| 65 | typedef typename LengthMap::KeyType KeyType; | 
|---|
| 66 | typedef typename LengthMap::ValueType ValueType; | 
|---|
| 67 |  | 
|---|
| 68 | ValueType operator[](typename ResGraphType::Edge e) const { | 
|---|
| 69 | if (G.forward(e)) | 
|---|
| 70 | return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); | 
|---|
| 71 | else | 
|---|
| 72 | return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); | 
|---|
| 73 | } | 
|---|
| 74 |  | 
|---|
| 75 | ModLengthMap(const ResGraphType& _G, | 
|---|
| 76 | const LengthMap &o,  const NodeMap &p) : | 
|---|
| 77 | G(_G), /*rev(_rev),*/ ol(o), pot(p){}; | 
|---|
| 78 | };//ModLengthMap | 
|---|
| 79 |  | 
|---|
| 80 |  | 
|---|
| 81 | protected: | 
|---|
| 82 |  | 
|---|
| 83 | //Input | 
|---|
| 84 | const Graph& G; | 
|---|
| 85 | const LengthMap& length; | 
|---|
| 86 | const SupplyDemandMap& supply_demand;//supply or demand of nodes | 
|---|
| 87 |  | 
|---|
| 88 |  | 
|---|
| 89 | //auxiliary variables | 
|---|
| 90 |  | 
|---|
| 91 | //To store the flow | 
|---|
| 92 | EdgeIntMap flow; | 
|---|
| 93 | //To store the potentila (dual variables) | 
|---|
| 94 | typename Graph::template NodeMap<Length> potential; | 
|---|
| 95 | //To store excess-deficit values | 
|---|
| 96 | SupplyDemandMap excess_deficit; | 
|---|
| 97 |  | 
|---|
| 98 |  | 
|---|
| 99 | Length total_length; | 
|---|
| 100 |  | 
|---|
| 101 |  | 
|---|
| 102 | public : | 
|---|
| 103 |  | 
|---|
| 104 |  | 
|---|
| 105 | MinCostFlow(Graph& _G, LengthMap& _length, SupplyDemandMap& _supply_demand) : G(_G), | 
|---|
| 106 | length(_length), supply_demand(_supply_demand), flow(_G), potential(_G){ } | 
|---|
| 107 |  | 
|---|
| 108 |  | 
|---|
| 109 | ///Runs the algorithm. | 
|---|
| 110 |  | 
|---|
| 111 | ///Runs the algorithm. | 
|---|
| 112 |  | 
|---|
| 113 | ///\todo May be it does make sense to be able to start with a nonzero | 
|---|
| 114 | /// feasible primal-dual solution pair as well. | 
|---|
| 115 | int run() { | 
|---|
| 116 |  | 
|---|
| 117 | //Resetting variables from previous runs | 
|---|
| 118 | //total_length = 0; | 
|---|
| 119 |  | 
|---|
| 120 | typedef typename Graph::template NodeMap<int> HeapMap; | 
|---|
| 121 | typedef Heap<Node, SupplyDemand, typename Graph::template NodeMap<int>, | 
|---|
| 122 | std::greater<SupplyDemand> >    HeapType; | 
|---|
| 123 |  | 
|---|
| 124 | //A heap for the excess nodes | 
|---|
| 125 | HeapMap excess_nodes_map(G,-1); | 
|---|
| 126 | HeapType excess_nodes(excess_nodes_map); | 
|---|
| 127 |  | 
|---|
| 128 | //A heap for the deficit nodes | 
|---|
| 129 | HeapMap deficit_nodes_map(G,-1); | 
|---|
| 130 | HeapType deficit_nodes(deficit_nodes_map); | 
|---|
| 131 |  | 
|---|
| 132 |  | 
|---|
| 133 | FOR_EACH_LOC(typename Graph::EdgeIt, e, G){ | 
|---|
| 134 | flow.set(e,0); | 
|---|
| 135 | } | 
|---|
| 136 |  | 
|---|
| 137 | //Initial value for delta | 
|---|
| 138 | SupplyDemand delta = 0; | 
|---|
| 139 |  | 
|---|
| 140 | FOR_EACH_LOC(typename Graph::NodeIt, n, G){ | 
|---|
| 141 | excess_deficit.set(n,supply_demand[n]); | 
|---|
| 142 | //A supply node | 
|---|
| 143 | if (excess_deficit[n] > 0){ | 
|---|
| 144 | excess_nodes.push(n,excess_deficit[n]); | 
|---|
| 145 | } | 
|---|
| 146 | //A demand node | 
|---|
| 147 | if (excess_deficit[n] < 0){ | 
|---|
| 148 | deficit_nodes.push(n, - excess_deficit[n]); | 
|---|
| 149 | } | 
|---|
| 150 | //Finding out starting value of delta | 
|---|
| 151 | if (delta < abs(excess_deficit[n])){ | 
|---|
| 152 | delta = abs(excess_deficit[n]); | 
|---|
| 153 | } | 
|---|
| 154 | //Initialize the copy of the Dijkstra potential to zero | 
|---|
| 155 | potential.set(n,0); | 
|---|
| 156 | } | 
|---|
| 157 |  | 
|---|
| 158 | //It'll be allright as an initial value, though this value | 
|---|
| 159 | //can be the maximum deficit here | 
|---|
| 160 | SupplyDemand max_excess = delta; | 
|---|
| 161 |  | 
|---|
| 162 | //We need a residual graph which is uncapacitated | 
|---|
| 163 | ResGraphType res_graph(G, flow); | 
|---|
| 164 |  | 
|---|
| 165 |  | 
|---|
| 166 |  | 
|---|
| 167 | ModLengthMap mod_length(res_graph, length, potential); | 
|---|
| 168 |  | 
|---|
| 169 | Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length); | 
|---|
| 170 |  | 
|---|
| 171 |  | 
|---|
| 172 | while (max_excess > 0){ | 
|---|
| 173 |  | 
|---|
| 174 | /* | 
|---|
| 175 | * Beginning of the delta scaling phase | 
|---|
| 176 | */ | 
|---|
| 177 |  | 
|---|
| 178 | //Merge and stuff | 
|---|
| 179 |  | 
|---|
| 180 | Node s = excess_nodes.top(); | 
|---|
| 181 | SupplyDemand max_excess = excess_nodes[s]; | 
|---|
| 182 | Node t = deficit_nodes.top(); | 
|---|
| 183 | if (max_excess < dificit_nodes[t]){ | 
|---|
| 184 | max_excess = dificit_nodes[t]; | 
|---|
| 185 | } | 
|---|
| 186 |  | 
|---|
| 187 |  | 
|---|
| 188 | while(max_excess > 0){ | 
|---|
| 189 |  | 
|---|
| 190 |  | 
|---|
| 191 | //s es t valasztasa | 
|---|
| 192 |  | 
|---|
| 193 | //Dijkstra part | 
|---|
| 194 | dijkstra.run(s); | 
|---|
| 195 |  | 
|---|
| 196 | /*We know from theory that t can be reached | 
|---|
| 197 | if (!dijkstra.reached(t)){ | 
|---|
| 198 | //There are no k paths from s to t | 
|---|
| 199 | break; | 
|---|
| 200 | }; | 
|---|
| 201 | */ | 
|---|
| 202 |  | 
|---|
| 203 | //We have to change the potential | 
|---|
| 204 | FOR_EACH_LOC(typename ResGraphType::NodeIt, n, res_graph){ | 
|---|
| 205 | potential[n] += dijkstra.distMap()[n]; | 
|---|
| 206 | } | 
|---|
| 207 |  | 
|---|
| 208 |  | 
|---|
| 209 | //Augmenting on the sortest path | 
|---|
| 210 | Node n=t; | 
|---|
| 211 | ResGraphEdge e; | 
|---|
| 212 | while (n!=s){ | 
|---|
| 213 | e = dijkstra.pred(n); | 
|---|
| 214 | n = dijkstra.predNode(n); | 
|---|
| 215 | res_graph.augment(e,delta); | 
|---|
| 216 | /* | 
|---|
| 217 | //Let's update the total length | 
|---|
| 218 | if (res_graph.forward(e)) | 
|---|
| 219 | total_length += length[e]; | 
|---|
| 220 | else | 
|---|
| 221 | total_length -= length[e]; | 
|---|
| 222 | */ | 
|---|
| 223 | } | 
|---|
| 224 |  | 
|---|
| 225 | //Update the excess_nodes heap | 
|---|
| 226 | if (delta >= excess_nodes[s]){ | 
|---|
| 227 | if (delta > excess_nodes[s]) | 
|---|
| 228 | deficit_nodes.push(s,delta - excess_nodes[s]); | 
|---|
| 229 | excess_nodes.pop(); | 
|---|
| 230 |  | 
|---|
| 231 | } | 
|---|
| 232 | else{ | 
|---|
| 233 | excess_nodes[s] -= delta; | 
|---|
| 234 | } | 
|---|
| 235 | //Update the deficit_nodes heap | 
|---|
| 236 | if (delta >= deficit_nodes[t]){ | 
|---|
| 237 | if (delta > deficit_nodes[t]) | 
|---|
| 238 | excess_nodes.push(t,delta - deficit_nodes[t]); | 
|---|
| 239 | deficit_nodes.pop(); | 
|---|
| 240 |  | 
|---|
| 241 | } | 
|---|
| 242 | else{ | 
|---|
| 243 | deficit_nodes[t] -= delta; | 
|---|
| 244 | } | 
|---|
| 245 | //Dijkstra part ends here | 
|---|
| 246 | } | 
|---|
| 247 |  | 
|---|
| 248 | /* | 
|---|
| 249 | * End of the delta scaling phase | 
|---|
| 250 | */ | 
|---|
| 251 |  | 
|---|
| 252 | //Whatever this means | 
|---|
| 253 | delta = delta / 2; | 
|---|
| 254 |  | 
|---|
| 255 | /*This is not necessary here | 
|---|
| 256 | //Update the max_excess | 
|---|
| 257 | max_excess = 0; | 
|---|
| 258 | FOR_EACH_LOC(typename Graph::NodeIt, n, G){ | 
|---|
| 259 | if (max_excess < excess_deficit[n]){ | 
|---|
| 260 | max_excess = excess_deficit[n]; | 
|---|
| 261 | } | 
|---|
| 262 | } | 
|---|
| 263 | */ | 
|---|
| 264 | //Reset delta if still too big | 
|---|
| 265 | if (8*number_of_nodes*max_excess <= delta){ | 
|---|
| 266 | delta = max_excess; | 
|---|
| 267 |  | 
|---|
| 268 | } | 
|---|
| 269 |  | 
|---|
| 270 | }//while(max_excess > 0) | 
|---|
| 271 |  | 
|---|
| 272 |  | 
|---|
| 273 | return i; | 
|---|
| 274 | } | 
|---|
| 275 |  | 
|---|
| 276 |  | 
|---|
| 277 |  | 
|---|
| 278 |  | 
|---|
| 279 | ///This function gives back the total length of the found paths. | 
|---|
| 280 | ///Assumes that \c run() has been run and nothing changed since then. | 
|---|
| 281 | Length totalLength(){ | 
|---|
| 282 | return total_length; | 
|---|
| 283 | } | 
|---|
| 284 |  | 
|---|
| 285 | ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must | 
|---|
| 286 | ///be called before using this function. | 
|---|
| 287 | const EdgeIntMap &getFlow() const { return flow;} | 
|---|
| 288 |  | 
|---|
| 289 | ///Returns a const reference to the NodeMap \c potential (the dual solution). | 
|---|
| 290 | /// \pre \ref run() must be called before using this function. | 
|---|
| 291 | const EdgeIntMap &getPotential() const { return potential;} | 
|---|
| 292 |  | 
|---|
| 293 | ///This function checks, whether the given solution is optimal | 
|---|
| 294 | ///Running after a \c run() should return with true | 
|---|
| 295 | ///In this "state of the art" this only check optimality, doesn't bother with feasibility | 
|---|
| 296 | /// | 
|---|
| 297 | ///\todo Is this OK here? | 
|---|
| 298 | bool checkComplementarySlackness(){ | 
|---|
| 299 | Length mod_pot; | 
|---|
| 300 | Length fl_e; | 
|---|
| 301 | FOR_EACH_LOC(typename Graph::EdgeIt, e, G){ | 
|---|
| 302 | //C^{\Pi}_{i,j} | 
|---|
| 303 | mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)]; | 
|---|
| 304 | fl_e = flow[e]; | 
|---|
| 305 | //      std::cout << fl_e << std::endl; | 
|---|
| 306 | if (0<fl_e && fl_e<capacity[e]){ | 
|---|
| 307 | if (mod_pot != 0) | 
|---|
| 308 | return false; | 
|---|
| 309 | } | 
|---|
| 310 | else{ | 
|---|
| 311 | if (mod_pot > 0 && fl_e != 0) | 
|---|
| 312 | return false; | 
|---|
| 313 | if (mod_pot < 0 && fl_e != capacity[e]) | 
|---|
| 314 | return false; | 
|---|
| 315 | } | 
|---|
| 316 | } | 
|---|
| 317 | return true; | 
|---|
| 318 | } | 
|---|
| 319 |  | 
|---|
| 320 |  | 
|---|
| 321 | }; //class MinCostFlow | 
|---|
| 322 |  | 
|---|
| 323 | ///@} | 
|---|
| 324 |  | 
|---|
| 325 | } //namespace hugo | 
|---|
| 326 |  | 
|---|
| 327 | #endif //HUGO_MINCOSTFLOW_H | 
|---|