| 1 | // -*- c++ -*- |
|---|
| 2 | #ifndef HUGO_MINCOSTFLOW_H |
|---|
| 3 | #define HUGO_MINCOSTFLOW_H |
|---|
| 4 | |
|---|
| 5 | ///\ingroup galgs |
|---|
| 6 | ///\file |
|---|
| 7 | ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost |
|---|
| 8 | |
|---|
| 9 | |
|---|
| 10 | #include <hugo/dijkstra.h> |
|---|
| 11 | #include <hugo/graph_wrapper.h> |
|---|
| 12 | #include <hugo/maps.h> |
|---|
| 13 | #include <vector> |
|---|
| 14 | #include <for_each_macros.h> |
|---|
| 15 | |
|---|
| 16 | namespace hugo { |
|---|
| 17 | |
|---|
| 18 | /// \addtogroup galgs |
|---|
| 19 | /// @{ |
|---|
| 20 | |
|---|
| 21 | ///\brief Implementation of an algorithm for finding a flow of value \c k |
|---|
| 22 | ///(for small values of \c k) having minimal total cost between 2 nodes |
|---|
| 23 | /// |
|---|
| 24 | /// |
|---|
| 25 | /// The class \ref hugo::MinCostFlow "MinCostFlow" implements |
|---|
| 26 | /// an algorithm for solving the following general minimum cost flow problem> |
|---|
| 27 | /// |
|---|
| 28 | /// |
|---|
| 29 | /// |
|---|
| 30 | /// \warning It is assumed here that the problem has a feasible solution |
|---|
| 31 | /// |
|---|
| 32 | /// The range of the length (weight) function is nonnegative reals but |
|---|
| 33 | /// the range of capacity function is the set of nonnegative integers. |
|---|
| 34 | /// It is not a polinomial time algorithm for counting the minimum cost |
|---|
| 35 | /// maximal flow, since it counts the minimum cost flow for every value 0..M |
|---|
| 36 | /// where \c M is the value of the maximal flow. |
|---|
| 37 | /// |
|---|
| 38 | ///\author Attila Bernath |
|---|
| 39 | template <typename Graph, typename LengthMap, typename SupplyMap> |
|---|
| 40 | class MinCostFlow { |
|---|
| 41 | |
|---|
| 42 | typedef typename LengthMap::ValueType Length; |
|---|
| 43 | |
|---|
| 44 | |
|---|
| 45 | typedef typename SupplyMap::ValueType Supply; |
|---|
| 46 | |
|---|
| 47 | typedef typename Graph::Node Node; |
|---|
| 48 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 49 | typedef typename Graph::Edge Edge; |
|---|
| 50 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
|---|
| 51 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; |
|---|
| 52 | |
|---|
| 53 | // typedef ConstMap<Edge,int> ConstMap; |
|---|
| 54 | |
|---|
| 55 | typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType; |
|---|
| 56 | typedef typename ResGraphType::Edge ResGraphEdge; |
|---|
| 57 | |
|---|
| 58 | class ModLengthMap { |
|---|
| 59 | //typedef typename ResGraphType::template NodeMap<Length> NodeMap; |
|---|
| 60 | typedef typename Graph::template NodeMap<Length> NodeMap; |
|---|
| 61 | const ResGraphType& G; |
|---|
| 62 | // const EdgeIntMap& rev; |
|---|
| 63 | const LengthMap &ol; |
|---|
| 64 | const NodeMap &pot; |
|---|
| 65 | public : |
|---|
| 66 | typedef typename LengthMap::KeyType KeyType; |
|---|
| 67 | typedef typename LengthMap::ValueType ValueType; |
|---|
| 68 | |
|---|
| 69 | ValueType operator[](typename ResGraphType::Edge e) const { |
|---|
| 70 | if (G.forward(e)) |
|---|
| 71 | return ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); |
|---|
| 72 | else |
|---|
| 73 | return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); |
|---|
| 74 | } |
|---|
| 75 | |
|---|
| 76 | ModLengthMap(const ResGraphType& _G, |
|---|
| 77 | const LengthMap &o, const NodeMap &p) : |
|---|
| 78 | G(_G), /*rev(_rev),*/ ol(o), pot(p){}; |
|---|
| 79 | };//ModLengthMap |
|---|
| 80 | |
|---|
| 81 | |
|---|
| 82 | protected: |
|---|
| 83 | |
|---|
| 84 | //Input |
|---|
| 85 | const Graph& G; |
|---|
| 86 | const LengthMap& length; |
|---|
| 87 | const SupplyMap& supply;//supply or demand of nodes |
|---|
| 88 | |
|---|
| 89 | |
|---|
| 90 | //auxiliary variables |
|---|
| 91 | |
|---|
| 92 | //To store the flow |
|---|
| 93 | EdgeIntMap flow; |
|---|
| 94 | //To store the potentila (dual variables) |
|---|
| 95 | typename Graph::template NodeMap<Length> potential; |
|---|
| 96 | //To store excess-deficit values |
|---|
| 97 | SupplyMap excess; |
|---|
| 98 | |
|---|
| 99 | |
|---|
| 100 | Length total_length; |
|---|
| 101 | |
|---|
| 102 | |
|---|
| 103 | public : |
|---|
| 104 | |
|---|
| 105 | |
|---|
| 106 | MinCostFlow(Graph& _G, LengthMap& _length, SupplyMap& _supply) : G(_G), |
|---|
| 107 | length(_length), supply(_supply), flow(_G), potential(_G){ } |
|---|
| 108 | |
|---|
| 109 | |
|---|
| 110 | ///Runs the algorithm. |
|---|
| 111 | |
|---|
| 112 | ///Runs the algorithm. |
|---|
| 113 | ///Returns k if there are at least k edge-disjoint paths from s to t. |
|---|
| 114 | ///Otherwise it returns the number of found edge-disjoint paths from s to t. |
|---|
| 115 | ///\todo May be it does make sense to be able to start with a nonzero |
|---|
| 116 | /// feasible primal-dual solution pair as well. |
|---|
| 117 | int run() { |
|---|
| 118 | |
|---|
| 119 | //Resetting variables from previous runs |
|---|
| 120 | total_length = 0; |
|---|
| 121 | |
|---|
| 122 | FOR_EACH_LOC(typename Graph::EdgeIt, e, G){ |
|---|
| 123 | flow.set(e,0); |
|---|
| 124 | } |
|---|
| 125 | |
|---|
| 126 | //Initial value for delta |
|---|
| 127 | Supply delta = 0; |
|---|
| 128 | |
|---|
| 129 | FOR_EACH_LOC(typename Graph::NodeIt, n, G){ |
|---|
| 130 | if (delta < abs(supply[e])){ |
|---|
| 131 | delta = abs(supply[e]); |
|---|
| 132 | } |
|---|
| 133 | excess.set(n,supply[e]); |
|---|
| 134 | //Initialize the copy of the Dijkstra potential to zero |
|---|
| 135 | potential.set(n,0); |
|---|
| 136 | } |
|---|
| 137 | |
|---|
| 138 | |
|---|
| 139 | |
|---|
| 140 | //We need a residual graph which is uncapacitated |
|---|
| 141 | ResGraphType res_graph(G, flow); |
|---|
| 142 | |
|---|
| 143 | |
|---|
| 144 | |
|---|
| 145 | ModLengthMap mod_length(res_graph, length, potential); |
|---|
| 146 | |
|---|
| 147 | Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length); |
|---|
| 148 | |
|---|
| 149 | |
|---|
| 150 | int i; |
|---|
| 151 | for (i=0; i<k; ++i){ |
|---|
| 152 | dijkstra.run(s); |
|---|
| 153 | if (!dijkstra.reached(t)){ |
|---|
| 154 | //There are no k paths from s to t |
|---|
| 155 | break; |
|---|
| 156 | }; |
|---|
| 157 | |
|---|
| 158 | //We have to copy the potential |
|---|
| 159 | FOR_EACH_LOC(typename ResGraphType::NodeIt, n, res_graph){ |
|---|
| 160 | potential[n] += dijkstra.distMap()[n]; |
|---|
| 161 | } |
|---|
| 162 | |
|---|
| 163 | /* |
|---|
| 164 | { |
|---|
| 165 | |
|---|
| 166 | typename ResGraphType::NodeIt n; |
|---|
| 167 | for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) { |
|---|
| 168 | potential[n] += dijkstra.distMap()[n]; |
|---|
| 169 | } |
|---|
| 170 | } |
|---|
| 171 | */ |
|---|
| 172 | |
|---|
| 173 | //Augmenting on the sortest path |
|---|
| 174 | Node n=t; |
|---|
| 175 | ResGraphEdge e; |
|---|
| 176 | while (n!=s){ |
|---|
| 177 | e = dijkstra.pred(n); |
|---|
| 178 | n = dijkstra.predNode(n); |
|---|
| 179 | res_graph.augment(e,delta); |
|---|
| 180 | //Let's update the total length |
|---|
| 181 | if (res_graph.forward(e)) |
|---|
| 182 | total_length += length[e]; |
|---|
| 183 | else |
|---|
| 184 | total_length -= length[e]; |
|---|
| 185 | } |
|---|
| 186 | |
|---|
| 187 | |
|---|
| 188 | } |
|---|
| 189 | |
|---|
| 190 | |
|---|
| 191 | return i; |
|---|
| 192 | } |
|---|
| 193 | |
|---|
| 194 | |
|---|
| 195 | |
|---|
| 196 | |
|---|
| 197 | ///This function gives back the total length of the found paths. |
|---|
| 198 | ///Assumes that \c run() has been run and nothing changed since then. |
|---|
| 199 | Length totalLength(){ |
|---|
| 200 | return total_length; |
|---|
| 201 | } |
|---|
| 202 | |
|---|
| 203 | ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must |
|---|
| 204 | ///be called before using this function. |
|---|
| 205 | const EdgeIntMap &getFlow() const { return flow;} |
|---|
| 206 | |
|---|
| 207 | ///Returns a const reference to the NodeMap \c potential (the dual solution). |
|---|
| 208 | /// \pre \ref run() must be called before using this function. |
|---|
| 209 | const EdgeIntMap &getPotential() const { return potential;} |
|---|
| 210 | |
|---|
| 211 | ///This function checks, whether the given solution is optimal |
|---|
| 212 | ///Running after a \c run() should return with true |
|---|
| 213 | ///In this "state of the art" this only check optimality, doesn't bother with feasibility |
|---|
| 214 | /// |
|---|
| 215 | ///\todo Is this OK here? |
|---|
| 216 | bool checkComplementarySlackness(){ |
|---|
| 217 | Length mod_pot; |
|---|
| 218 | Length fl_e; |
|---|
| 219 | FOR_EACH_LOC(typename Graph::EdgeIt, e, G){ |
|---|
| 220 | //C^{\Pi}_{i,j} |
|---|
| 221 | mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)]; |
|---|
| 222 | fl_e = flow[e]; |
|---|
| 223 | // std::cout << fl_e << std::endl; |
|---|
| 224 | if (0<fl_e && fl_e<capacity[e]){ |
|---|
| 225 | if (mod_pot != 0) |
|---|
| 226 | return false; |
|---|
| 227 | } |
|---|
| 228 | else{ |
|---|
| 229 | if (mod_pot > 0 && fl_e != 0) |
|---|
| 230 | return false; |
|---|
| 231 | if (mod_pot < 0 && fl_e != capacity[e]) |
|---|
| 232 | return false; |
|---|
| 233 | } |
|---|
| 234 | } |
|---|
| 235 | return true; |
|---|
| 236 | } |
|---|
| 237 | |
|---|
| 238 | |
|---|
| 239 | }; //class MinCostFlow |
|---|
| 240 | |
|---|
| 241 | ///@} |
|---|
| 242 | |
|---|
| 243 | } //namespace hugo |
|---|
| 244 | |
|---|
| 245 | #endif //HUGO_MINCOSTFLOW_H |
|---|