COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/work/athos/mincostflows.h @ 607:327f7cf13843

Last change on this file since 607:327f7cf13843 was 607:327f7cf13843, checked in by athos, 20 years ago

Finished MinLengthPaths?: a specialization of MinCostFlows?.

File size: 7.0 KB
RevLine 
[276]1// -*- c++ -*-
[523]2#ifndef HUGO_MINCOSTFLOWS_H
3#define HUGO_MINCOSTFLOWS_H
[276]4
[491]5///\ingroup galgs
[294]6///\file
[523]7///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost
[294]8
[276]9#include <iostream>
[551]10#include <hugo/dijkstra.h>
[607]11#include <hugo/graph_wrapper.h>
[551]12#include <hugo/maps.h>
13#include <vector>
[530]14#include <for_each_macros.h>
[306]15
[276]16namespace hugo {
17
[430]18/// \addtogroup galgs
19/// @{
[322]20
[523]21  ///\brief Implementation of an algorithm for finding a flow of value \c k
22  ///(for small values of \c k) having minimal total cost between 2 nodes
23  ///
[310]24  ///
[523]25  /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
26  /// an algorithm for finding a flow of value \c k
27  ///(for small values of \c k) having minimal total cost 
[310]28  /// from a given source node to a given target node in an
[523]29  /// edge-weighted directed graph having nonnegative integer capacities.
30  /// The range of the length (weight) function is nonnegative reals but
31  /// the range of capacity function is the set of nonnegative integers.
32  /// It is not a polinomial time algorithm for counting the minimum cost
33  /// maximal flow, since it counts the minimum cost flow for every value 0..M
34  /// where \c M is the value of the maximal flow.
[456]35  ///
36  ///\author Attila Bernath
[530]37  template <typename Graph, typename LengthMap, typename CapacityMap>
[523]38  class MinCostFlows {
[276]39
[310]40    typedef typename LengthMap::ValueType Length;
[527]41
[530]42    //Warning: this should be integer type
43    typedef typename CapacityMap::ValueType Capacity;
[511]44   
[276]45    typedef typename Graph::Node Node;
46    typedef typename Graph::NodeIt NodeIt;
47    typedef typename Graph::Edge Edge;
48    typedef typename Graph::OutEdgeIt OutEdgeIt;
[511]49    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
[306]50
[527]51    //    typedef ConstMap<Edge,int> ConstMap;
[306]52
[530]53    typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
54    typedef typename ResGraphType::Edge ResGraphEdge;
[547]55
[306]56    class ModLengthMap {   
[547]57      //typedef typename ResGraphType::template NodeMap<Length> NodeMap;
58      typedef typename Graph::template NodeMap<Length> NodeMap;
[306]59      const ResGraphType& G;
[527]60      //      const EdgeIntMap& rev;
[310]61      const LengthMap &ol;
62      const NodeMap &pot;
[306]63    public :
64      typedef typename LengthMap::KeyType KeyType;
65      typedef typename LengthMap::ValueType ValueType;
[511]66       
[306]67      ValueType operator[](typename ResGraphType::Edge e) const {     
[527]68        if (G.forward(e))
69          return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
70        else
71          return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
[306]72      }     
[511]73       
[530]74      ModLengthMap(const ResGraphType& _G,
[310]75                   const LengthMap &o,  const NodeMap &p) :
[527]76        G(_G), /*rev(_rev),*/ ol(o), pot(p){};
[511]77    };//ModLengthMap
78
79
[607]80  protected:
[306]81   
[527]82    //Input
[276]83    const Graph& G;
84    const LengthMap& length;
[530]85    const CapacityMap& capacity;
[276]86
[607]87
[328]88    //auxiliary variables
[322]89
[551]90    //To store the flow
[527]91    EdgeIntMap flow;
[551]92    //To store the potentila (dual variables)
[547]93    typename Graph::template NodeMap<Length> potential;
[276]94   
[322]95    //Container to store found paths
[551]96    //std::vector< std::vector<Edge> > paths;
[511]97    //typedef DirPath<Graph> DPath;
98    //DPath paths;
99
100
101    Length total_length;
[322]102
[607]103
[276]104  public :
[310]105
[276]106
[530]107    MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G),
[547]108      length(_length), capacity(_cap), flow(_G), potential(_G){ }
[276]109
[294]110   
[329]111    ///Runs the algorithm.
112
113    ///Runs the algorithm.
[306]114    ///Returns k if there are at least k edge-disjoint paths from s to t.
[329]115    ///Otherwise it returns the number of found edge-disjoint paths from s to t.
[607]116    ///\todo May be it does make sense to be able to start with a nonzero
117    /// feasible primal-dual solution pair as well.
[306]118    int run(Node s, Node t, int k) {
[276]119
[530]120      //Resetting variables from previous runs
121      total_length = 0;
[547]122     
[530]123      FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
124        flow.set(e,0);
125      }
[547]126     
127      FOR_EACH_LOC(typename Graph::NodeIt, n, G){
128        //cout << potential[n]<<endl;
129        potential.set(n,0);
130      }
131     
[511]132
[530]133     
[527]134      //We need a residual graph
135      ResGraphType res_graph(G, capacity, flow);
[306]136
137      //Initialize the copy of the Dijkstra potential to zero
[547]138     
139      //typename ResGraphType::template NodeMap<Length> potential(res_graph);
140
141
142      ModLengthMap mod_length(res_graph, length, potential);
[306]143
144      Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
[322]145
146      int i;
147      for (i=0; i<k; ++i){
[276]148        dijkstra.run(s);
149        if (!dijkstra.reached(t)){
[314]150          //There are no k paths from s to t
[322]151          break;
[276]152        };
[306]153       
154        {
155          //We have to copy the potential
156          typename ResGraphType::NodeIt n;
157          for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
[547]158              potential[n] += dijkstra.distMap()[n];
[306]159          }
160        }
161
162
[527]163        //Augmenting on the sortest path
[276]164        Node n=t;
[530]165        ResGraphEdge e;
[276]166        while (n!=s){
[291]167          e = dijkstra.pred(n);
168          n = dijkstra.predNode(n);
[530]169          res_graph.augment(e,1);
170          //Let's update the total length
171          if (res_graph.forward(e))
172            total_length += length[e];
173          else
174            total_length -= length[e];     
[276]175        }
176
177         
178      }
[322]179     
180
181      return i;
[276]182    }
183
[530]184
185
[547]186
[511]187    ///This function gives back the total length of the found paths.
188    ///Assumes that \c run() has been run and nothing changed since then.
189    Length totalLength(){
190      return total_length;
191    }
192
[607]193    ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
194    ///be called before using this function.
195    const EdgeIntMap &getFlow() const { return flow;}
196
197  ///Returns a const reference to the NodeMap \c potential (the dual solution).
198    /// \pre \ref run() must be called before using this function.
199    const EdgeIntMap &getPotential() const { return potential;}
200
201    ///This function checks, whether the given solution is optimal
202    ///Running after a \c run() should return with true
203    ///In this "state of the art" this only check optimality, doesn't bother with feasibility
204    ///
205    ///\todo Is this OK here?
206    bool checkComplementarySlackness(){
[551]207      Length mod_pot;
208      Length fl_e;
209      FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
210        //C^{\Pi}_{i,j}
[554]211        mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
[551]212        fl_e = flow[e];
[554]213        //      std::cout << fl_e << std::endl;
[551]214        if (0<fl_e && fl_e<capacity[e]){
215          if (mod_pot != 0)
216            return false;
217        }
218        else{
219          if (mod_pot > 0 && fl_e != 0)
220            return false;
221          if (mod_pot < 0 && fl_e != capacity[e])
222            return false;
223        }
224      }
225      return true;
226    }
227   
[530]228    /*
229      ///\todo To be implemented later
230
[511]231    ///This function gives back the \c j-th path in argument p.
232    ///Assumes that \c run() has been run and nothing changed since then.
[519]233    /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path.
[511]234    template<typename DirPath>
235    void getPath(DirPath& p, int j){
236      p.clear();
237      typename DirPath::Builder B(p);
238      for(typename std::vector<Edge>::iterator i=paths[j].begin();
239          i!=paths[j].end(); ++i ){
[520]240        B.pushBack(*i);
[511]241      }
242
243      B.commit();
244    }
[276]245
[530]246    */
247
248  }; //class MinCostFlows
[276]249
[430]250  ///@}
[276]251
252} //namespace hugo
253
[527]254#endif //HUGO_MINCOSTFLOW_H
Note: See TracBrowser for help on using the repository browser.