COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/work/athos/mincostflows.h @ 527:7550fed0cd91

Last change on this file since 527:7550fed0cd91 was 527:7550fed0cd91, checked in by athos, 20 years ago

Nem tudom, a hugo-n miert nem megy.

File size: 5.8 KB
RevLine 
[276]1// -*- c++ -*-
[523]2#ifndef HUGO_MINCOSTFLOWS_H
3#define HUGO_MINCOSTFLOWS_H
[276]4
[491]5///\ingroup galgs
[294]6///\file
[523]7///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost
[294]8
[276]9#include <iostream>
10#include <dijkstra.h>
11#include <graph_wrapper.h>
[306]12#include <maps.h>
[511]13#include <vector.h>
[322]14
[306]15
[276]16namespace hugo {
17
[430]18/// \addtogroup galgs
19/// @{
[322]20
[523]21  ///\brief Implementation of an algorithm for finding a flow of value \c k
22  ///(for small values of \c k) having minimal total cost between 2 nodes
23  ///
[310]24  ///
[523]25  /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
26  /// an algorithm for finding a flow of value \c k
27  ///(for small values of \c k) having minimal total cost 
[310]28  /// from a given source node to a given target node in an
[523]29  /// edge-weighted directed graph having nonnegative integer capacities.
30  /// The range of the length (weight) function is nonnegative reals but
31  /// the range of capacity function is the set of nonnegative integers.
32  /// It is not a polinomial time algorithm for counting the minimum cost
33  /// maximal flow, since it counts the minimum cost flow for every value 0..M
34  /// where \c M is the value of the maximal flow.
[456]35  ///
36  ///\author Attila Bernath
[310]37  template <typename Graph, typename LengthMap>
[523]38  class MinCostFlows {
[276]39
[310]40    typedef typename LengthMap::ValueType Length;
[527]41
42    typedef typename LengthMap::ValueType Length;
[511]43   
[276]44    typedef typename Graph::Node Node;
45    typedef typename Graph::NodeIt NodeIt;
46    typedef typename Graph::Edge Edge;
47    typedef typename Graph::OutEdgeIt OutEdgeIt;
[511]48    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
[306]49
[527]50    //    typedef ConstMap<Edge,int> ConstMap;
[306]51
[527]52    typedef ResGraphWrapper<const Graph,int,EdgeIntMap,EdgeIntMap> ResGraphType;
[276]53
[306]54    class ModLengthMap {   
[511]55      typedef typename ResGraphType::template NodeMap<Length> NodeMap;
[306]56      const ResGraphType& G;
[527]57      //      const EdgeIntMap& rev;
[310]58      const LengthMap &ol;
59      const NodeMap &pot;
[306]60    public :
61      typedef typename LengthMap::KeyType KeyType;
62      typedef typename LengthMap::ValueType ValueType;
[511]63       
[306]64      ValueType operator[](typename ResGraphType::Edge e) const {     
[527]65        if (G.forward(e))
66          return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
67        else
68          return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
[306]69      }     
[511]70       
[310]71      ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev,
72                   const LengthMap &o,  const NodeMap &p) :
[527]73        G(_G), /*rev(_rev),*/ ol(o), pot(p){};
[511]74    };//ModLengthMap
75
76
[306]77   
[527]78    //Input
[276]79    const Graph& G;
80    const LengthMap& length;
[527]81    const EdgeIntMap& capacity;
[276]82
[328]83    //auxiliary variables
[322]84
[314]85    //The value is 1 iff the edge is reversed.
86    //If the algorithm has finished, the edges of the seeked paths are
87    //exactly those that are reversed
[527]88    EdgeIntMap flow;
[276]89   
[322]90    //Container to store found paths
91    std::vector< std::vector<Edge> > paths;
[511]92    //typedef DirPath<Graph> DPath;
93    //DPath paths;
94
95
96    Length total_length;
[322]97
[276]98  public :
[310]99
[276]100
[527]101    MinLengthPaths(Graph& _G, LengthMap& _length, EdgeIntMap& _cap) : G(_G),
102      length(_length), capacity(_cap), flow(_G)/*, dijkstra_dist(_G)*/{ }
[276]103
[294]104   
[329]105    ///Runs the algorithm.
106
107    ///Runs the algorithm.
[306]108    ///Returns k if there are at least k edge-disjoint paths from s to t.
[329]109    ///Otherwise it returns the number of found edge-disjoint paths from s to t.
[306]110    int run(Node s, Node t, int k) {
[276]111
[511]112
[527]113      //We need a residual graph
114      ResGraphType res_graph(G, capacity, flow);
[306]115
116      //Initialize the copy of the Dijkstra potential to zero
[511]117      typename ResGraphType::template NodeMap<Length> dijkstra_dist(res_graph);
[527]118      ModLengthMap mod_length(res_graph, length, dijkstra_dist);
[306]119
120      Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
[322]121
122      int i;
123      for (i=0; i<k; ++i){
[276]124        dijkstra.run(s);
125        if (!dijkstra.reached(t)){
[314]126          //There are no k paths from s to t
[322]127          break;
[276]128        };
[306]129       
130        {
131          //We have to copy the potential
132          typename ResGraphType::NodeIt n;
133          for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
134              dijkstra_dist[n] += dijkstra.distMap()[n];
135          }
136        }
137
138
[527]139        //Augmenting on the sortest path
[276]140        Node n=t;
141        Edge e;
142        while (n!=s){
[291]143          e = dijkstra.pred(n);
144          n = dijkstra.predNode(n);
[527]145          G.augment(e,1);
[276]146        }
147
148         
149      }
[322]150     
[527]151      /*
152        ///\TODO To be implemented later
153
[322]154      //Let's find the paths
[511]155      //We put the paths into stl vectors (as an inner representation).
156      //In the meantime we lose the information stored in 'reversed'.
[322]157      //We suppose the lengths to be positive now.
[511]158
159      //Meanwhile we put the total length of the found paths
160      //in the member variable total_length
[322]161      paths.clear();
[511]162      total_length=0;
[322]163      paths.resize(k);
164      for (int j=0; j<i; ++j){
165        Node n=s;
166        OutEdgeIt e;
167
168        while (n!=t){
169
170
171          G.first(e,n);
172         
173          while (!reversed[e]){
174            G.next(e);
175          }
176          n = G.head(e);
177          paths[j].push_back(e);
[511]178          total_length += length[e];
[322]179          reversed[e] = 1-reversed[e];
180        }
181       
182      }
[527]183      */
[322]184
185      return i;
[276]186    }
187
[511]188    ///This function gives back the total length of the found paths.
189    ///Assumes that \c run() has been run and nothing changed since then.
190    Length totalLength(){
191      return total_length;
192    }
193
194    ///This function gives back the \c j-th path in argument p.
195    ///Assumes that \c run() has been run and nothing changed since then.
[519]196    /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path.
[511]197    template<typename DirPath>
198    void getPath(DirPath& p, int j){
199      p.clear();
200      typename DirPath::Builder B(p);
201      for(typename std::vector<Edge>::iterator i=paths[j].begin();
202          i!=paths[j].end(); ++i ){
[520]203        B.pushBack(*i);
[511]204      }
205
206      B.commit();
207    }
[276]208
[310]209  }; //class MinLengthPaths
[276]210
[430]211  ///@}
[276]212
213} //namespace hugo
214
[527]215#endif //HUGO_MINCOSTFLOW_H
Note: See TracBrowser for help on using the repository browser.