| 1 | // -*- c++ -*- | 
|---|
| 2 | #ifndef HUGO_SUURBALLE_H | 
|---|
| 3 | #define HUGO_SUURBALLE_H | 
|---|
| 4 |  | 
|---|
| 5 | ///\file | 
|---|
| 6 | ///\brief Suurballe algorithm. | 
|---|
| 7 |  | 
|---|
| 8 | #include <iostream> | 
|---|
| 9 | #include <dijkstra.h> | 
|---|
| 10 | #include <graph_wrapper.h> | 
|---|
| 11 | namespace hugo { | 
|---|
| 12 |  | 
|---|
| 13 |  | 
|---|
| 14 | ///\brief Implementation of Suurballe's algorithm | 
|---|
| 15 | /// | 
|---|
| 16 | /// The class \ref hugo::Suurballe "Suurballe" implements | 
|---|
| 17 | /// Suurballe's algorithm which seeks for k edge-disjoint paths | 
|---|
| 18 | /// from a given source node to a given target node in an | 
|---|
| 19 | /// edge-weighted directed graph having minimal total cost. | 
|---|
| 20 | /// | 
|---|
| 21 | /// | 
|---|
| 22 |  | 
|---|
| 23 | template <typename Graph, typename T, | 
|---|
| 24 | typename LengthMap=typename Graph::EdgeMap<T> > | 
|---|
| 25 | class Suurballe { | 
|---|
| 26 |  | 
|---|
| 27 |  | 
|---|
| 28 | //Writing maps | 
|---|
| 29 | class ConstMap { | 
|---|
| 30 | public : | 
|---|
| 31 | typedef int ValueType; | 
|---|
| 32 | typedef typename Graph::Edge KeyType; | 
|---|
| 33 |  | 
|---|
| 34 | int operator[](typename Graph::Edge e) const { | 
|---|
| 35 | return 1; | 
|---|
| 36 | } | 
|---|
| 37 | }; | 
|---|
| 38 | /* | 
|---|
| 39 | //    template <typename Graph, typename T> | 
|---|
| 40 | class ModLengthMap { | 
|---|
| 41 | typedef typename Graph::EdgeMap<T> EdgeMap; | 
|---|
| 42 | typedef typename Graph::NodeMap<T> NodeMap; | 
|---|
| 43 |  | 
|---|
| 44 | const EdgeMap &ol; | 
|---|
| 45 | const NodeMap &pot; | 
|---|
| 46 | public : | 
|---|
| 47 | typedef typename EdgeMap::KeyType KeyType; | 
|---|
| 48 | typedef typename EdgeMap::ValueType ValueType; | 
|---|
| 49 |  | 
|---|
| 50 | double operator[](typename Graph::EdgeIt e) const { | 
|---|
| 51 | return 10;//ol.get(e)-pot.get(v)-pot.get(u); | 
|---|
| 52 | } | 
|---|
| 53 |  | 
|---|
| 54 | ModLengthMap(const EdgeMap &o, | 
|---|
| 55 | const NodeMap &p) : | 
|---|
| 56 | ol(o), pot(p){}; | 
|---|
| 57 | }; | 
|---|
| 58 | */ | 
|---|
| 59 |  | 
|---|
| 60 |  | 
|---|
| 61 | typedef typename Graph::Node Node; | 
|---|
| 62 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 63 | typedef typename Graph::Edge Edge; | 
|---|
| 64 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 65 | typedef TrivGraphWrapper<const Graph> TrivGraphType; | 
|---|
| 66 | typedef ResGraphWrapper<TrivGraphType,int,typename Graph::EdgeMap<int>, | 
|---|
| 67 | ConstMap> ResGraphType; | 
|---|
| 68 |  | 
|---|
| 69 | const Graph& G; | 
|---|
| 70 | const LengthMap& length; | 
|---|
| 71 |  | 
|---|
| 72 |  | 
|---|
| 73 | //auxiliary variables | 
|---|
| 74 |  | 
|---|
| 75 | typename Graph::EdgeMap<int> reversed; | 
|---|
| 76 | typename Graph::NodeMap<T> dijkstra_dist; | 
|---|
| 77 |  | 
|---|
| 78 | public : | 
|---|
| 79 |  | 
|---|
| 80 |  | 
|---|
| 81 | Suurballe(Graph& _G, LengthMap& _length) : G(_G), | 
|---|
| 82 | length(_length), reversed(_G), dijkstra_dist(_G){ } | 
|---|
| 83 |  | 
|---|
| 84 | ///Runs Suurballe's algorithm | 
|---|
| 85 |  | 
|---|
| 86 | ///Runs Suurballe's algorithm | 
|---|
| 87 | ///Returns true iff there are k edge-disjoint paths from s to t | 
|---|
| 88 | bool run(Node s, Node t, int k) { | 
|---|
| 89 |  | 
|---|
| 90 | LengthMap mod_length_c = length; | 
|---|
| 91 | ConstMap const1map; | 
|---|
| 92 | //ResGraphWrapper< Graph,T,typename Graph::EdgeMap<int>, ConstMap> | 
|---|
| 93 | TrivGraphType ize(G); | 
|---|
| 94 | ResGraphType res_graph(ize, reversed, const1map); | 
|---|
| 95 | //ModLengthMap modified_length(length, dijkstra_dist); | 
|---|
| 96 | //Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, modified_length); | 
|---|
| 97 | //ResGraphWrapper< Graph,T,typename Graph::EdgeMap<int>, ConstMap> | 
|---|
| 98 | Dijkstra<ResGraphType, LengthMap> dijkstra(res_graph, mod_length_c); | 
|---|
| 99 |  | 
|---|
| 100 | for (int i=0; i<k; ++i){ | 
|---|
| 101 | dijkstra.run(s); | 
|---|
| 102 | if (!dijkstra.reached(t)){ | 
|---|
| 103 | //There is no k path from s to t | 
|---|
| 104 | return false; | 
|---|
| 105 | }; | 
|---|
| 106 | { | 
|---|
| 107 | //We have to copy the potential | 
|---|
| 108 | typename ResGraphType::EdgeIt e; | 
|---|
| 109 | for ( res_graph.first(e) ; res_graph.valid(e) ; res_graph.next(e) ) { | 
|---|
| 110 | //dijkstra_dist[e] = dijkstra.distMap()[e]; | 
|---|
| 111 | mod_length_c[Edge(e)] = mod_length_c[Edge(e)] - | 
|---|
| 112 | dijkstra.distMap()[res_graph.head(e)] + | 
|---|
| 113 | dijkstra.distMap()[res_graph.tail(e)]; | 
|---|
| 114 | } | 
|---|
| 115 | } | 
|---|
| 116 |  | 
|---|
| 117 | //Reversing the sortest path | 
|---|
| 118 | Node n=t; | 
|---|
| 119 | Edge e; | 
|---|
| 120 | while (n!=s){ | 
|---|
| 121 | e = dijkstra.pred(n); | 
|---|
| 122 | n = dijkstra.predNode(n); | 
|---|
| 123 | reversed[e] = 1-reversed[e]; | 
|---|
| 124 | } | 
|---|
| 125 |  | 
|---|
| 126 |  | 
|---|
| 127 | } | 
|---|
| 128 | return true; | 
|---|
| 129 | } | 
|---|
| 130 |  | 
|---|
| 131 |  | 
|---|
| 132 |  | 
|---|
| 133 |  | 
|---|
| 134 |  | 
|---|
| 135 | };//class Suurballe | 
|---|
| 136 |  | 
|---|
| 137 |  | 
|---|
| 138 |  | 
|---|
| 139 |  | 
|---|
| 140 | } //namespace hugo | 
|---|
| 141 |  | 
|---|
| 142 | #endif //HUGO_SUURBALLE_H | 
|---|