| 1 | // -*- c++ -*- | 
|---|
| 2 | #ifndef LEMON_MINLENGTHPATHS_H | 
|---|
| 3 | #define LEMON_MINLENGTHPATHS_H | 
|---|
| 4 |  | 
|---|
| 5 | ///\ingroup galgs | 
|---|
| 6 | ///\file | 
|---|
| 7 | ///\brief An algorithm for finding k paths of minimal total length. | 
|---|
| 8 |  | 
|---|
| 9 | #include <iostream> | 
|---|
| 10 | #include <lemon/dijkstra.h> | 
|---|
| 11 | #include <lemon/graph_wrapper.h> | 
|---|
| 12 | #include <lemon/maps.h> | 
|---|
| 13 | #include <vector> | 
|---|
| 14 |  | 
|---|
| 15 |  | 
|---|
| 16 | namespace lemon { | 
|---|
| 17 |  | 
|---|
| 18 | /// \addtogroup galgs | 
|---|
| 19 | /// @{ | 
|---|
| 20 |  | 
|---|
| 21 |   ///\brief Implementation of an algorithm for finding k paths between 2 nodes  | 
|---|
| 22 |   /// of minimal total length  | 
|---|
| 23 |   /// | 
|---|
| 24 |   /// The class \ref lemon::MinLengthPaths "MinLengthPaths" implements | 
|---|
| 25 |   /// an algorithm for finding k edge-disjoint paths | 
|---|
| 26 |   /// from a given source node to a given target node in an | 
|---|
| 27 |   /// edge-weighted directed graph having minimal total weigth (length). | 
|---|
| 28 |   /// | 
|---|
| 29 |   ///\author Attila Bernath | 
|---|
| 30 |   template <typename Graph, typename LengthMap> | 
|---|
| 31 |   class MinLengthPaths { | 
|---|
| 32 |  | 
|---|
| 33 |     typedef typename LengthMap::Value Length; | 
|---|
| 34 |      | 
|---|
| 35 |     typedef typename Graph::Node Node; | 
|---|
| 36 |     typedef typename Graph::NodeIt NodeIt; | 
|---|
| 37 |     typedef typename Graph::Edge Edge; | 
|---|
| 38 |     typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 39 |     typedef typename Graph::template EdgeMap<int> EdgeIntMap; | 
|---|
| 40 |  | 
|---|
| 41 |     typedef ConstMap<Edge,int> ConstMap; | 
|---|
| 42 |  | 
|---|
| 43 |     typedef ResGraphWrapper<const Graph,int,ConstMap,EdgeIntMap> ResGraphType; | 
|---|
| 44 |  | 
|---|
| 45 |     class ModLengthMap {    | 
|---|
| 46 |       typedef typename ResGraphType::template NodeMap<Length> NodeMap; | 
|---|
| 47 |       const ResGraphType& G; | 
|---|
| 48 |       const EdgeIntMap& rev; | 
|---|
| 49 |       const LengthMap &ol; | 
|---|
| 50 |       const NodeMap &pot; | 
|---|
| 51 |     public : | 
|---|
| 52 |       typedef typename LengthMap::Key Key; | 
|---|
| 53 |       typedef typename LengthMap::Value Value; | 
|---|
| 54 |          | 
|---|
| 55 |       Value operator[](typename ResGraphType::Edge e) const {      | 
|---|
| 56 |         //if ( (1-2*rev[e])*ol[e]-(pot[G.target(e)]-pot[G.source(e)] ) <0 ){ | 
|---|
| 57 |         //  std::cout<<"Negative length!!"<<std::endl; | 
|---|
| 58 |         //} | 
|---|
| 59 |         return (1-2*rev[e])*ol[e]-(pot[G.target(e)]-pot[G.source(e)]);    | 
|---|
| 60 |       }      | 
|---|
| 61 |          | 
|---|
| 62 |       ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev,  | 
|---|
| 63 |                    const LengthMap &o,  const NodeMap &p) :  | 
|---|
| 64 |         G(_G), rev(_rev), ol(o), pot(p){};  | 
|---|
| 65 |     };//ModLengthMap | 
|---|
| 66 |  | 
|---|
| 67 |  | 
|---|
| 68 |      | 
|---|
| 69 |  | 
|---|
| 70 |     const Graph& G; | 
|---|
| 71 |     const LengthMap& length; | 
|---|
| 72 |  | 
|---|
| 73 |     //auxiliary variables | 
|---|
| 74 |  | 
|---|
| 75 |     //The value is 1 iff the edge is reversed.  | 
|---|
| 76 |     //If the algorithm has finished, the edges of the seeked paths are  | 
|---|
| 77 |     //exactly those that are reversed  | 
|---|
| 78 |     EdgeIntMap reversed;  | 
|---|
| 79 |      | 
|---|
| 80 |     //Container to store found paths | 
|---|
| 81 |     std::vector< std::vector<Edge> > paths; | 
|---|
| 82 |     //typedef DirPath<Graph> DPath; | 
|---|
| 83 |     //DPath paths; | 
|---|
| 84 |  | 
|---|
| 85 |  | 
|---|
| 86 |     Length total_length; | 
|---|
| 87 |  | 
|---|
| 88 |   public : | 
|---|
| 89 |  | 
|---|
| 90 |  | 
|---|
| 91 |     MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G),  | 
|---|
| 92 |       length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ } | 
|---|
| 93 |  | 
|---|
| 94 |      | 
|---|
| 95 |     ///Runs the algorithm. | 
|---|
| 96 |  | 
|---|
| 97 |     ///Runs the algorithm. | 
|---|
| 98 |     ///Returns k if there are at least k edge-disjoint paths from s to t. | 
|---|
| 99 |     ///Otherwise it returns the number of found edge-disjoint paths from s to t. | 
|---|
| 100 |     int run(Node s, Node t, int k) { | 
|---|
| 101 |       ConstMap const1map(1); | 
|---|
| 102 |  | 
|---|
| 103 |  | 
|---|
| 104 |       //We need a residual graph, in which some of the edges are reversed | 
|---|
| 105 |       ResGraphType res_graph(G, const1map, reversed); | 
|---|
| 106 |  | 
|---|
| 107 |       //Initialize the copy of the Dijkstra potential to zero | 
|---|
| 108 |       typename ResGraphType::template NodeMap<Length> dijkstra_dist(res_graph); | 
|---|
| 109 |       ModLengthMap mod_length(res_graph, reversed, length, dijkstra_dist); | 
|---|
| 110 |  | 
|---|
| 111 |       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length); | 
|---|
| 112 |  | 
|---|
| 113 |       int i; | 
|---|
| 114 |       for (i=0; i<k; ++i){ | 
|---|
| 115 |         dijkstra.run(s); | 
|---|
| 116 |         if (!dijkstra.reached(t)){ | 
|---|
| 117 |           //There are no k paths from s to t | 
|---|
| 118 |           break; | 
|---|
| 119 |         }; | 
|---|
| 120 |          | 
|---|
| 121 |         { | 
|---|
| 122 |           //We have to copy the potential | 
|---|
| 123 |           typename ResGraphType::NodeIt n; | 
|---|
| 124 |           for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) { | 
|---|
| 125 |               dijkstra_dist[n] += dijkstra.distMap()[n]; | 
|---|
| 126 |           } | 
|---|
| 127 |         } | 
|---|
| 128 |  | 
|---|
| 129 |  | 
|---|
| 130 |         //Reversing the sortest path | 
|---|
| 131 |         Node n=t; | 
|---|
| 132 |         Edge e; | 
|---|
| 133 |         while (n!=s){ | 
|---|
| 134 |           e = dijkstra.pred(n); | 
|---|
| 135 |           n = dijkstra.predNode(n); | 
|---|
| 136 |           reversed[e] = 1-reversed[e]; | 
|---|
| 137 |         } | 
|---|
| 138 |  | 
|---|
| 139 |            | 
|---|
| 140 |       } | 
|---|
| 141 |        | 
|---|
| 142 |       //Let's find the paths | 
|---|
| 143 |       //We put the paths into stl vectors (as an inner representation).  | 
|---|
| 144 |       //In the meantime we lose the information stored in 'reversed'. | 
|---|
| 145 |       //We suppose the lengths to be positive now. | 
|---|
| 146 |  | 
|---|
| 147 |       //Meanwhile we put the total length of the found paths  | 
|---|
| 148 |       //in the member variable total_length | 
|---|
| 149 |       paths.clear(); | 
|---|
| 150 |       total_length=0; | 
|---|
| 151 |       paths.resize(k); | 
|---|
| 152 |       for (int j=0; j<i; ++j){ | 
|---|
| 153 |         Node n=s; | 
|---|
| 154 |         OutEdgeIt e; | 
|---|
| 155 |  | 
|---|
| 156 |         while (n!=t){ | 
|---|
| 157 |  | 
|---|
| 158 |  | 
|---|
| 159 |           G.first(e,n); | 
|---|
| 160 |            | 
|---|
| 161 |           while (!reversed[e]){ | 
|---|
| 162 |             G.next(e); | 
|---|
| 163 |           } | 
|---|
| 164 |           n = G.target(e); | 
|---|
| 165 |           paths[j].push_back(e); | 
|---|
| 166 |           total_length += length[e]; | 
|---|
| 167 |           reversed[e] = 1-reversed[e]; | 
|---|
| 168 |         } | 
|---|
| 169 |          | 
|---|
| 170 |       } | 
|---|
| 171 |  | 
|---|
| 172 |       return i; | 
|---|
| 173 |     } | 
|---|
| 174 |  | 
|---|
| 175 |     ///This function gives back the total length of the found paths. | 
|---|
| 176 |     ///Assumes that \c run() has been run and nothing changed since then. | 
|---|
| 177 |     Length totalLength(){ | 
|---|
| 178 |       return total_length; | 
|---|
| 179 |     } | 
|---|
| 180 |  | 
|---|
| 181 |     ///This function gives back the \c j-th path in argument p. | 
|---|
| 182 |     ///Assumes that \c run() has been run and nothing changed since then. | 
|---|
| 183 |     /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path. | 
|---|
| 184 |     template<typename DirPath> | 
|---|
| 185 |     void getPath(DirPath& p, int j){ | 
|---|
| 186 |       p.clear(); | 
|---|
| 187 |       typename DirPath::Builder B(p); | 
|---|
| 188 |       for(typename std::vector<Edge>::iterator i=paths[j].begin();  | 
|---|
| 189 |           i!=paths[j].end(); ++i ){ | 
|---|
| 190 |         B.pushBack(*i); | 
|---|
| 191 |       } | 
|---|
| 192 |  | 
|---|
| 193 |       B.commit(); | 
|---|
| 194 |     } | 
|---|
| 195 |  | 
|---|
| 196 |   }; //class MinLengthPaths | 
|---|
| 197 |  | 
|---|
| 198 |   ///@} | 
|---|
| 199 |  | 
|---|
| 200 | } //namespace lemon | 
|---|
| 201 |  | 
|---|
| 202 | #endif //LEMON_MINLENGTHPATHS_H | 
|---|