1 | /** |
---|
2 | 2 dimensional vector (plainvector) implementation |
---|
3 | |
---|
4 | */ |
---|
5 | #ifndef HUGO_XY_H |
---|
6 | #define HUGO_XY_H |
---|
7 | |
---|
8 | #include <iostream> |
---|
9 | |
---|
10 | using namespace std; |
---|
11 | template<typename T> |
---|
12 | class xy { |
---|
13 | T _x,_y; |
---|
14 | |
---|
15 | public: |
---|
16 | |
---|
17 | ///Default constructor: both coordinates become 0 |
---|
18 | xy() { _x=_y=0; } |
---|
19 | |
---|
20 | ///Constructing from coordinates |
---|
21 | xy(T a, T b) { _x=a; _y=b; } |
---|
22 | |
---|
23 | ///Gives back the x coordinate |
---|
24 | T x(){ |
---|
25 | return _x; |
---|
26 | }; |
---|
27 | |
---|
28 | ///Gives back the y coordinate |
---|
29 | T y(){ |
---|
30 | return _y; |
---|
31 | }; |
---|
32 | |
---|
33 | ///Gives back the square of the norm of the vector |
---|
34 | T normSquare(){ |
---|
35 | return _x*_x+_y*_y; |
---|
36 | }; |
---|
37 | |
---|
38 | ///Increments the left hand side by u |
---|
39 | xy<T>& operator +=(const xy<T>& u){ |
---|
40 | _x += u._x; |
---|
41 | _y += u._y; |
---|
42 | return *this; |
---|
43 | }; |
---|
44 | |
---|
45 | ///Decrements the left hand side by u |
---|
46 | xy<T>& operator -=(const xy<T>& u){ |
---|
47 | _x -= u._x; |
---|
48 | _y -= u._y; |
---|
49 | return *this; |
---|
50 | }; |
---|
51 | |
---|
52 | ///Multiplying the left hand side with a scalar |
---|
53 | xy<T>& operator *=(const T &u){ |
---|
54 | _x *= u; |
---|
55 | _y *= u; |
---|
56 | return *this; |
---|
57 | }; |
---|
58 | |
---|
59 | ///Returns the scalar product of two vectors |
---|
60 | T operator *(const xy<T>& u){ |
---|
61 | return _x*u._x+_y*u._y; |
---|
62 | }; |
---|
63 | |
---|
64 | ///Returns the sum of two vectors |
---|
65 | xy<T> operator+(const xy<T> &u) const { |
---|
66 | xy<T> b=*this; |
---|
67 | return b+=u; |
---|
68 | }; |
---|
69 | |
---|
70 | ///Returns the difference of two vectors |
---|
71 | xy<T> operator-(const xy<T> &u) const { |
---|
72 | xy<T> b=*this; |
---|
73 | return b-=u; |
---|
74 | }; |
---|
75 | |
---|
76 | ///Returns a vector multiplied by a scalar |
---|
77 | xy<T> operator*(const T &u) const { |
---|
78 | xy<T> b=*this; |
---|
79 | return b*=u; |
---|
80 | }; |
---|
81 | |
---|
82 | ///Testing equality |
---|
83 | bool operator==(const xy<T> &u){ |
---|
84 | return (_x==u._x) && (_y==u._y); |
---|
85 | }; |
---|
86 | |
---|
87 | ///Testing inequality |
---|
88 | bool operator!=(xy u){ |
---|
89 | return (_x!=u._x) || (_y!=u._y); |
---|
90 | }; |
---|
91 | |
---|
92 | }; |
---|
93 | ///Reading a plainvector from a stream |
---|
94 | template<typename T> |
---|
95 | inline |
---|
96 | istream& operator>>(istream &is, xy<T> &z) |
---|
97 | { |
---|
98 | ///This is not the best solution here: I didn't know how to solve this with friend functions |
---|
99 | T a,b; |
---|
100 | is >> a >> b; |
---|
101 | xy<T> buf(a,b); |
---|
102 | z=buf; |
---|
103 | return is; |
---|
104 | } |
---|
105 | |
---|
106 | ///Outputting a plainvector to a stream |
---|
107 | template<typename T> |
---|
108 | inline |
---|
109 | ostream& operator<<(ostream &os, xy<T> z) |
---|
110 | { |
---|
111 | os << "(" << z.x() << ", " << z.y() << ")"; |
---|
112 | return os; |
---|
113 | } |
---|
114 | |
---|
115 | |
---|
116 | |
---|
117 | #endif //HUGO_XY_H |
---|