| 1 | // -*- C++ -*- | 
|---|
| 2 | #ifndef LEMON_DIJKSTRA_H | 
|---|
| 3 | #define LEMON_DIJKSTRA_H | 
|---|
| 4 |  | 
|---|
| 5 | ///\ingroup galgs | 
|---|
| 6 | ///\file | 
|---|
| 7 | ///\brief Dijkstra algorithm. | 
|---|
| 8 |  | 
|---|
| 9 | #include <lemon/bin_heap.h> | 
|---|
| 10 | #include <lemon/invalid.h> | 
|---|
| 11 |  | 
|---|
| 12 | namespace lemon { | 
|---|
| 13 |  | 
|---|
| 14 | /// \addtogroup galgs | 
|---|
| 15 | /// @{ | 
|---|
| 16 |  | 
|---|
| 17 | ///%Dijkstra algorithm class. | 
|---|
| 18 |  | 
|---|
| 19 | ///This class provides an efficient implementation of %Dijkstra algorithm. | 
|---|
| 20 | ///The edge lengths are passed to the algorithm using a | 
|---|
| 21 | ///\ref ReadMap "readable map", | 
|---|
| 22 | ///so it is easy to change it to any kind of length. | 
|---|
| 23 | /// | 
|---|
| 24 | ///The type of the length is determined by the \c Value of the length map. | 
|---|
| 25 | /// | 
|---|
| 26 | ///It is also possible to change the underlying priority heap. | 
|---|
| 27 | /// | 
|---|
| 28 | ///\param GR The graph type the algorithm runs on. | 
|---|
| 29 | ///\param LM This read-only | 
|---|
| 30 | ///EdgeMap | 
|---|
| 31 | ///determines the | 
|---|
| 32 | ///lengths of the edges. It is read once for each edge, so the map | 
|---|
| 33 | ///may involve in relatively time consuming process to compute the edge | 
|---|
| 34 | ///length if it is necessary. The default map type is | 
|---|
| 35 | ///\ref Graph::EdgeMap "Graph::EdgeMap<int>" | 
|---|
| 36 | ///\param Heap The heap type used by the %Dijkstra | 
|---|
| 37 | ///algorithm. The default | 
|---|
| 38 | ///is using \ref BinHeap "binary heap". | 
|---|
| 39 | /// | 
|---|
| 40 | ///\author Jacint Szabo and Alpar Juttner | 
|---|
| 41 | ///\todo We need a typedef-names should be standardized. (-: | 
|---|
| 42 |  | 
|---|
| 43 | #ifdef DOXYGEN | 
|---|
| 44 | template <typename GR, | 
|---|
| 45 | typename LM, | 
|---|
| 46 | typename Heap> | 
|---|
| 47 | #else | 
|---|
| 48 | template <typename GR, | 
|---|
| 49 | typename LM=typename GR::template EdgeMap<int>, | 
|---|
| 50 | template <class,class,class,class> class Heap = BinHeap > | 
|---|
| 51 | #endif | 
|---|
| 52 | class Dijkstra{ | 
|---|
| 53 | public: | 
|---|
| 54 | ///The type of the underlying graph. | 
|---|
| 55 | typedef GR Graph; | 
|---|
| 56 | typedef typename Graph::Node Node; | 
|---|
| 57 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 58 | typedef typename Graph::Edge Edge; | 
|---|
| 59 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 60 |  | 
|---|
| 61 | ///The type of the length of the edges. | 
|---|
| 62 | typedef typename LM::Value Value; | 
|---|
| 63 | ///The type of the map that stores the edge lengths. | 
|---|
| 64 | typedef LM LengthMap; | 
|---|
| 65 | ///\brief The type of the map that stores the last | 
|---|
| 66 | ///edges of the shortest paths. | 
|---|
| 67 | typedef typename Graph::template NodeMap<Edge> PredMap; | 
|---|
| 68 | ///\brief The type of the map that stores the last but one | 
|---|
| 69 | ///nodes of the shortest paths. | 
|---|
| 70 | typedef typename Graph::template NodeMap<Node> PredNodeMap; | 
|---|
| 71 | ///The type of the map that stores the dists of the nodes. | 
|---|
| 72 | typedef typename Graph::template NodeMap<Value> DistMap; | 
|---|
| 73 |  | 
|---|
| 74 | private: | 
|---|
| 75 | const Graph *G; | 
|---|
| 76 | const LM *length; | 
|---|
| 77 | //    bool local_length; | 
|---|
| 78 | PredMap *predecessor; | 
|---|
| 79 | bool local_predecessor; | 
|---|
| 80 | PredNodeMap *pred_node; | 
|---|
| 81 | bool local_pred_node; | 
|---|
| 82 | DistMap *distance; | 
|---|
| 83 | bool local_distance; | 
|---|
| 84 |  | 
|---|
| 85 | ///Initialize maps | 
|---|
| 86 |  | 
|---|
| 87 | ///\todo Error if \c G or are \c NULL. What about \c length? | 
|---|
| 88 | ///\todo Better memory allocation (instead of new). | 
|---|
| 89 | void init_maps() | 
|---|
| 90 | { | 
|---|
| 91 | //       if(!length) { | 
|---|
| 92 | //      local_length = true; | 
|---|
| 93 | //      length = new LM(G); | 
|---|
| 94 | //       } | 
|---|
| 95 | if(!predecessor) { | 
|---|
| 96 | local_predecessor = true; | 
|---|
| 97 | predecessor = new PredMap(*G); | 
|---|
| 98 | } | 
|---|
| 99 | if(!pred_node) { | 
|---|
| 100 | local_pred_node = true; | 
|---|
| 101 | pred_node = new PredNodeMap(*G); | 
|---|
| 102 | } | 
|---|
| 103 | if(!distance) { | 
|---|
| 104 | local_distance = true; | 
|---|
| 105 | distance = new DistMap(*G); | 
|---|
| 106 | } | 
|---|
| 107 | } | 
|---|
| 108 |  | 
|---|
| 109 | public : | 
|---|
| 110 |  | 
|---|
| 111 | Dijkstra(const Graph& _G, const LM& _length) : | 
|---|
| 112 | G(&_G), length(&_length), | 
|---|
| 113 | predecessor(NULL), pred_node(NULL), distance(NULL), | 
|---|
| 114 | local_predecessor(false), local_pred_node(false), local_distance(false) | 
|---|
| 115 | { } | 
|---|
| 116 |  | 
|---|
| 117 | ~Dijkstra() | 
|---|
| 118 | { | 
|---|
| 119 | //      if(local_length) delete length; | 
|---|
| 120 | if(local_predecessor) delete predecessor; | 
|---|
| 121 | if(local_pred_node) delete pred_node; | 
|---|
| 122 | if(local_distance) delete distance; | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 | ///Sets the graph the algorithm will run on. | 
|---|
| 126 |  | 
|---|
| 127 | ///Sets the graph the algorithm will run on. | 
|---|
| 128 | ///\return <tt> (*this) </tt> | 
|---|
| 129 | Dijkstra &setGraph(const Graph &_G) | 
|---|
| 130 | { | 
|---|
| 131 | G = &_G; | 
|---|
| 132 | return *this; | 
|---|
| 133 | } | 
|---|
| 134 | ///Sets the length map. | 
|---|
| 135 |  | 
|---|
| 136 | ///Sets the length map. | 
|---|
| 137 | ///\return <tt> (*this) </tt> | 
|---|
| 138 | Dijkstra &setLengthMap(const LM &m) | 
|---|
| 139 | { | 
|---|
| 140 | //       if(local_length) { | 
|---|
| 141 | //      delete length; | 
|---|
| 142 | //      local_length=false; | 
|---|
| 143 | //       } | 
|---|
| 144 | length = &m; | 
|---|
| 145 | return *this; | 
|---|
| 146 | } | 
|---|
| 147 |  | 
|---|
| 148 | ///Sets the map storing the predecessor edges. | 
|---|
| 149 |  | 
|---|
| 150 | ///Sets the map storing the predecessor edges. | 
|---|
| 151 | ///If you don't use this function before calling \ref run(), | 
|---|
| 152 | ///it will allocate one. The destuctor deallocates this | 
|---|
| 153 | ///automatically allocated map, of course. | 
|---|
| 154 | ///\return <tt> (*this) </tt> | 
|---|
| 155 | Dijkstra &setPredMap(PredMap &m) | 
|---|
| 156 | { | 
|---|
| 157 | if(local_predecessor) { | 
|---|
| 158 | delete predecessor; | 
|---|
| 159 | local_predecessor=false; | 
|---|
| 160 | } | 
|---|
| 161 | predecessor = &m; | 
|---|
| 162 | return *this; | 
|---|
| 163 | } | 
|---|
| 164 |  | 
|---|
| 165 | ///Sets the map storing the predecessor nodes. | 
|---|
| 166 |  | 
|---|
| 167 | ///Sets the map storing the predecessor nodes. | 
|---|
| 168 | ///If you don't use this function before calling \ref run(), | 
|---|
| 169 | ///it will allocate one. The destuctor deallocates this | 
|---|
| 170 | ///automatically allocated map, of course. | 
|---|
| 171 | ///\return <tt> (*this) </tt> | 
|---|
| 172 | Dijkstra &setPredNodeMap(PredNodeMap &m) | 
|---|
| 173 | { | 
|---|
| 174 | if(local_pred_node) { | 
|---|
| 175 | delete pred_node; | 
|---|
| 176 | local_pred_node=false; | 
|---|
| 177 | } | 
|---|
| 178 | pred_node = &m; | 
|---|
| 179 | return *this; | 
|---|
| 180 | } | 
|---|
| 181 |  | 
|---|
| 182 | ///Sets the map storing the distances calculated by the algorithm. | 
|---|
| 183 |  | 
|---|
| 184 | ///Sets the map storing the distances calculated by the algorithm. | 
|---|
| 185 | ///If you don't use this function before calling \ref run(), | 
|---|
| 186 | ///it will allocate one. The destuctor deallocates this | 
|---|
| 187 | ///automatically allocated map, of course. | 
|---|
| 188 | ///\return <tt> (*this) </tt> | 
|---|
| 189 | Dijkstra &setDistMap(DistMap &m) | 
|---|
| 190 | { | 
|---|
| 191 | if(local_distance) { | 
|---|
| 192 | delete distance; | 
|---|
| 193 | local_distance=false; | 
|---|
| 194 | } | 
|---|
| 195 | distance = &m; | 
|---|
| 196 | return *this; | 
|---|
| 197 | } | 
|---|
| 198 |  | 
|---|
| 199 | ///Runs %Dijkstra algorithm from node \c s. | 
|---|
| 200 |  | 
|---|
| 201 | ///This method runs the %Dijkstra algorithm from a root node \c s | 
|---|
| 202 | ///in order to | 
|---|
| 203 | ///compute the | 
|---|
| 204 | ///shortest path to each node. The algorithm computes | 
|---|
| 205 | ///- The shortest path tree. | 
|---|
| 206 | ///- The distance of each node from the root. | 
|---|
| 207 |  | 
|---|
| 208 | void run(Node s) { | 
|---|
| 209 |  | 
|---|
| 210 | init_maps(); | 
|---|
| 211 |  | 
|---|
| 212 | for ( NodeIt u(*G) ; G->valid(u) ; G->next(u) ) { | 
|---|
| 213 | predecessor->set(u,INVALID); | 
|---|
| 214 | pred_node->set(u,INVALID); | 
|---|
| 215 | } | 
|---|
| 216 |  | 
|---|
| 217 | typename GR::template NodeMap<int> heap_map(*G,-1); | 
|---|
| 218 |  | 
|---|
| 219 | typedef Heap<Node, Value, typename GR::template NodeMap<int>, | 
|---|
| 220 | std::less<Value> > | 
|---|
| 221 | HeapType; | 
|---|
| 222 |  | 
|---|
| 223 | HeapType heap(heap_map); | 
|---|
| 224 |  | 
|---|
| 225 | heap.push(s,0); | 
|---|
| 226 |  | 
|---|
| 227 | while ( !heap.empty() ) { | 
|---|
| 228 |  | 
|---|
| 229 | Node v=heap.top(); | 
|---|
| 230 | Value oldvalue=heap[v]; | 
|---|
| 231 | heap.pop(); | 
|---|
| 232 | distance->set(v, oldvalue); | 
|---|
| 233 |  | 
|---|
| 234 |  | 
|---|
| 235 | for(OutEdgeIt e(*G,v); G->valid(e); G->next(e)) { | 
|---|
| 236 | Node w=G->bNode(e); | 
|---|
| 237 |  | 
|---|
| 238 | switch(heap.state(w)) { | 
|---|
| 239 | case HeapType::PRE_HEAP: | 
|---|
| 240 | heap.push(w,oldvalue+(*length)[e]); | 
|---|
| 241 | predecessor->set(w,e); | 
|---|
| 242 | pred_node->set(w,v); | 
|---|
| 243 | break; | 
|---|
| 244 | case HeapType::IN_HEAP: | 
|---|
| 245 | if ( oldvalue+(*length)[e] < heap[w] ) { | 
|---|
| 246 | heap.decrease(w, oldvalue+(*length)[e]); | 
|---|
| 247 | predecessor->set(w,e); | 
|---|
| 248 | pred_node->set(w,v); | 
|---|
| 249 | } | 
|---|
| 250 | break; | 
|---|
| 251 | case HeapType::POST_HEAP: | 
|---|
| 252 | break; | 
|---|
| 253 | } | 
|---|
| 254 | } | 
|---|
| 255 | } | 
|---|
| 256 | } | 
|---|
| 257 |  | 
|---|
| 258 | ///The distance of a node from the root. | 
|---|
| 259 |  | 
|---|
| 260 | ///Returns the distance of a node from the root. | 
|---|
| 261 | ///\pre \ref run() must be called before using this function. | 
|---|
| 262 | ///\warning If node \c v in unreachable from the root the return value | 
|---|
| 263 | ///of this funcion is undefined. | 
|---|
| 264 | Value dist(Node v) const { return (*distance)[v]; } | 
|---|
| 265 |  | 
|---|
| 266 | ///Returns the 'previous edge' of the shortest path tree. | 
|---|
| 267 |  | 
|---|
| 268 | ///For a node \c v it returns the 'previous edge' of the shortest path tree, | 
|---|
| 269 | ///i.e. it returns the last edge from a shortest path from the root to \c | 
|---|
| 270 | ///v. It is \ref INVALID | 
|---|
| 271 | ///if \c v is unreachable from the root or if \c v=s. The | 
|---|
| 272 | ///shortest path tree used here is equal to the shortest path tree used in | 
|---|
| 273 | ///\ref predNode(Node v).  \pre \ref run() must be called before using | 
|---|
| 274 | ///this function. | 
|---|
| 275 | Edge pred(Node v) const { return (*predecessor)[v]; } | 
|---|
| 276 |  | 
|---|
| 277 | ///Returns the 'previous node' of the shortest path tree. | 
|---|
| 278 |  | 
|---|
| 279 | ///For a node \c v it returns the 'previous node' of the shortest path tree, | 
|---|
| 280 | ///i.e. it returns the last but one node from a shortest path from the | 
|---|
| 281 | ///root to \c /v. It is INVALID if \c v is unreachable from the root or if | 
|---|
| 282 | ///\c v=s. The shortest path tree used here is equal to the shortest path | 
|---|
| 283 | ///tree used in \ref pred(Node v).  \pre \ref run() must be called before | 
|---|
| 284 | ///using this function. | 
|---|
| 285 | Node predNode(Node v) const { return (*pred_node)[v]; } | 
|---|
| 286 |  | 
|---|
| 287 | ///Returns a reference to the NodeMap of distances. | 
|---|
| 288 |  | 
|---|
| 289 | ///Returns a reference to the NodeMap of distances. \pre \ref run() must | 
|---|
| 290 | ///be called before using this function. | 
|---|
| 291 | const DistMap &distMap() const { return *distance;} | 
|---|
| 292 |  | 
|---|
| 293 | ///Returns a reference to the shortest path tree map. | 
|---|
| 294 |  | 
|---|
| 295 | ///Returns a reference to the NodeMap of the edges of the | 
|---|
| 296 | ///shortest path tree. | 
|---|
| 297 | ///\pre \ref run() must be called before using this function. | 
|---|
| 298 | const PredMap &predMap() const { return *predecessor;} | 
|---|
| 299 |  | 
|---|
| 300 | ///Returns a reference to the map of nodes of shortest paths. | 
|---|
| 301 |  | 
|---|
| 302 | ///Returns a reference to the NodeMap of the last but one nodes of the | 
|---|
| 303 | ///shortest path tree. | 
|---|
| 304 | ///\pre \ref run() must be called before using this function. | 
|---|
| 305 | const PredNodeMap &predNodeMap() const { return *pred_node;} | 
|---|
| 306 |  | 
|---|
| 307 | ///Checks if a node is reachable from the root. | 
|---|
| 308 |  | 
|---|
| 309 | ///Returns \c true if \c v is reachable from the root. | 
|---|
| 310 | ///\warning the root node is reported to be unreached! | 
|---|
| 311 | ///\todo Is this what we want? | 
|---|
| 312 | ///\pre \ref run() must be called before using this function. | 
|---|
| 313 | /// | 
|---|
| 314 | bool reached(Node v) { return G->valid((*predecessor)[v]); } | 
|---|
| 315 |  | 
|---|
| 316 | }; | 
|---|
| 317 |  | 
|---|
| 318 |  | 
|---|
| 319 | // ********************************************************************** | 
|---|
| 320 | //  IMPLEMENTATIONS | 
|---|
| 321 | // ********************************************************************** | 
|---|
| 322 |  | 
|---|
| 323 | /// @} | 
|---|
| 324 |  | 
|---|
| 325 | } //END OF NAMESPACE LEMON | 
|---|
| 326 |  | 
|---|
| 327 | #endif | 
|---|
| 328 |  | 
|---|
| 329 |  | 
|---|