[159] | 1 | // -*- C++ -*- |
---|
| 2 | /* |
---|
| 3 | *template <Graph, T, Heap=FibHeap> |
---|
| 4 | * |
---|
| 5 | * |
---|
| 6 | *Constructor: |
---|
| 7 | * |
---|
| 8 | *Dijkstra(Graph G, NodeIt s, Graph::EdgeMap<T> length) |
---|
| 9 | * |
---|
| 10 | * |
---|
| 11 | * |
---|
| 12 | *Member functions: |
---|
| 13 | * |
---|
| 14 | *void run() |
---|
| 15 | * |
---|
| 16 | * The following function should be used after run() was already run. |
---|
| 17 | * |
---|
| 18 | * |
---|
| 19 | *T dist(NodeIt v) : returns the distance from s to v. |
---|
| 20 | * It is 0 if v is not reachable from s. |
---|
| 21 | * |
---|
| 22 | * |
---|
| 23 | *EdgeIt pred(NodeIt v) : returns the last edge |
---|
| 24 | * of a shortest s-v path. Returns an invalid iterator |
---|
| 25 | * if v=s or v is not reachable from s. |
---|
| 26 | * |
---|
| 27 | * |
---|
| 28 | *bool reach(NodeIt v) : true iff v is reachable from s |
---|
| 29 | * |
---|
| 30 | */ |
---|
| 31 | |
---|
| 32 | #ifndef DIJKSTRA_HH |
---|
| 33 | #define DIJKSTRA_HH |
---|
| 34 | |
---|
| 35 | #include <fib_heap.h> |
---|
| 36 | |
---|
| 37 | namespace hugo { |
---|
| 38 | |
---|
| 39 | template <typename Graph, typename T, |
---|
| 40 | typename Heap=FibHeap<typename Graph::NodeIt, T, |
---|
| 41 | typename Graph::NodeMap<int> > > |
---|
| 42 | class Dijkstra{ |
---|
| 43 | typedef typename Graph::NodeIt NodeIt; |
---|
| 44 | typedef typename Graph::EdgeIt EdgeIt; |
---|
| 45 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 46 | |
---|
| 47 | Graph& G; |
---|
| 48 | NodeIt s; |
---|
| 49 | typename Graph::NodeMap<EdgeIt> predecessor; |
---|
| 50 | typename Graph::NodeMap<T> distance; |
---|
| 51 | typename Graph::EdgeMap<T>& length; |
---|
| 52 | typename Graph::NodeMap<bool> reached; |
---|
| 53 | |
---|
| 54 | public : |
---|
| 55 | |
---|
| 56 | /* |
---|
| 57 | The distance of the nodes is 0. |
---|
| 58 | */ |
---|
| 59 | Dijkstra(Graph& _G, NodeIt const _s, |
---|
| 60 | typename Graph::EdgeMap<T>& _length) : |
---|
| 61 | G(_G), s(_s), predecessor(G), distance(G), |
---|
| 62 | length(_length), reached(G, false) { } |
---|
| 63 | |
---|
| 64 | |
---|
| 65 | void run() { |
---|
| 66 | |
---|
| 67 | typename Graph::NodeMap<bool> scanned(G, false); |
---|
| 68 | typename Graph::NodeMap<int> heap_map(G,-1); |
---|
| 69 | |
---|
| 70 | Heap heap(heap_map); |
---|
| 71 | |
---|
| 72 | heap.push(s,0); |
---|
| 73 | reached.set(s, true); |
---|
| 74 | |
---|
| 75 | while ( !heap.empty() ) { |
---|
| 76 | |
---|
| 77 | NodeIt v=heap.top(); |
---|
| 78 | T oldvalue=heap.get(v); |
---|
| 79 | distance.set(v, oldvalue); |
---|
| 80 | heap.pop(); |
---|
| 81 | |
---|
| 82 | OutEdgeIt e; |
---|
| 83 | for( G.getFirst(e,v); G.valid(e); G.next(e)) { |
---|
[160] | 84 | NodeIt w=G.bNode(e); |
---|
[159] | 85 | |
---|
| 86 | if ( !scanned.get(w) ) { |
---|
| 87 | if ( !reached.get(w) ) { |
---|
| 88 | reached.set(w,true); |
---|
| 89 | heap.push(w,oldvalue+length.get(e)); |
---|
| 90 | predecessor.set(w,e); |
---|
| 91 | |
---|
| 92 | } else if ( oldvalue+length.get(e) < heap.get(w) ) { |
---|
| 93 | predecessor.set(w,e); |
---|
| 94 | heap.decrease(w, oldvalue+length.get(e)); |
---|
| 95 | } |
---|
| 96 | } |
---|
| 97 | } |
---|
| 98 | scanned.set(v,true); |
---|
| 99 | } |
---|
| 100 | } |
---|
| 101 | |
---|
| 102 | |
---|
| 103 | T dist(NodeIt v) { |
---|
| 104 | return distance.get(v); |
---|
| 105 | } |
---|
| 106 | |
---|
| 107 | |
---|
| 108 | EdgeIt pred(NodeIt v) { |
---|
| 109 | if ( v!=s ) return predecessor.get(v); |
---|
| 110 | else return EdgeIt(); |
---|
| 111 | } |
---|
| 112 | |
---|
| 113 | |
---|
| 114 | bool reach(NodeIt v) { |
---|
| 115 | return reached.get(v); |
---|
| 116 | } |
---|
| 117 | |
---|
| 118 | }; |
---|
| 119 | |
---|
| 120 | } |
---|
| 121 | |
---|
| 122 | #endif |
---|
| 123 | |
---|
| 124 | |
---|