/* *dijkstra *by jacint *Performs Dijkstra's algorithm from node s. * *Constructor: * *dijkstra(graph_type& G, node_iterator s, edge_property_vector& distance) * * * *Member functions: * *void run() * * The following function should be used after run() was already run. * * *T dist(node_iterator v) : returns the distance from s to v. * It is 0 if v is not reachable from s. * * *edge_iterator pred(node_iterator v) * Returns the last edge of a shortest s-v path. * Returns an invalid iterator if v=s or v is not * reachable from s. * * *bool reach(node_iterator v) : true if v is reachable from s * * * * * *Problems: * *Heap implementation is needed, because the priority queue of stl *does not have a mathod for key-decrease, so we had to use here a *g\'any solution. * *The implementation of infinity would be desirable, see after line 100. */ #ifndef DIJKSTRA_HH #define DIJKSTRA_HH #include #include #include #include namespace std { namespace marci { template class dijkstra{ typedef typename graph_traits::node_iterator node_iterator; typedef typename graph_traits::edge_iterator edge_iterator; typedef typename graph_traits::each_node_iterator each_node_iterator; typedef typename graph_traits::in_edge_iterator in_edge_iterator; typedef typename graph_traits::out_edge_iterator out_edge_iterator; graph_type& G; node_iterator s; node_property_vector predecessor; node_property_vector distance; edge_property_vector length; node_property_vector reached; public : /* The distance of all the nodes is 0. */ dijkstra(graph_type& _G, node_iterator _s, edge_property_vector& _length) : G(_G), s(_s), predecessor(G, 0), distance(G, 0), length(_length), reached(G, false) { } /*By Misi.*/ struct node_dist_comp { node_property_vector &d; node_dist_comp(node_property_vector &_d) : d(_d) {} bool operator()(const node_iterator& u, const node_iterator& v) const { return d.get(u) < d.get(v); } }; void run() { node_property_vector scanned(G, false); std::priority_queue, node_dist_comp> heap(( node_dist_comp(distance) )); heap.push(s); reached.put(s, true); while (!heap.empty()) { node_iterator v=heap.top(); heap.pop(); if (!scanned.get(v)) { for(out_edge_iterator e=G.first_out_edge(v); e.valid(); ++e) { node_iterator w=G.head(e); if (!scanned.get(w)) { if (!reached.get(w)) { reached.put(w,true); distance.put(w, distance.get(v)-length.get(e)); predecessor.put(w,e); } else if (distance.get(v)-length.get(e)>distance.get(w)) { distance.put(w, distance.get(v)-length.get(e)); predecessor.put(w,e); } heap.push(w); } } scanned.put(v,true); } // if (!scanned.get(v)) } // while (!heap.empty()) } //void run() /* *Returns the distance of the node v. *It is 0 for the root and for the nodes not *reachable form the root. */ T dist(node_iterator v) { return -distance.get(v); } /* * Returns the last edge of a shortest s-v path. * Returns an invalid iterator if v=root or v is not * reachable from the root. */ edge_iterator pred(node_iterator v) { if (v!=s) { return predecessor.get(v);} else {return edge_iterator();} } bool reach(node_iterator v) { return reached.get(v); } };// class dijkstra } // namespace marci } #endif //DIJKSTRA_HH