1 | // -*- C++ -*- |
---|
2 | /* |
---|
3 | *template <typename Item, |
---|
4 | * typename Prio, |
---|
5 | * typename ItemIntMap, |
---|
6 | * typename Compare = std::less<Prio> > |
---|
7 | * |
---|
8 | *constructors: |
---|
9 | * |
---|
10 | *FibHeap(ItemIntMap), FibHeap(ItemIntMap, Compare) |
---|
11 | * |
---|
12 | *Member functions: |
---|
13 | * |
---|
14 | *int size() : returns the number of elements in the heap |
---|
15 | * |
---|
16 | *bool empty() : true iff size()=0 |
---|
17 | * |
---|
18 | *void set(Item, Prio) : calls push(Item, Prio) if Item is not |
---|
19 | * in the heap, and calls decrease/increase(Item, Prio) otherwise |
---|
20 | * |
---|
21 | *void push(Item, Prio) : pushes Item to the heap with priority Prio. Item |
---|
22 | * mustn't be in the heap. |
---|
23 | * |
---|
24 | *Item top() : returns the Item with least Prio. |
---|
25 | * Must be called only if heap is nonempty. |
---|
26 | * |
---|
27 | *Prio prio() : returns the least Prio |
---|
28 | * Must be called only if heap is nonempty. |
---|
29 | * |
---|
30 | *Prio get(Item) : returns Prio of Item |
---|
31 | * Must be called only if Item is in heap. |
---|
32 | * |
---|
33 | *void pop() : deletes the Item with least Prio |
---|
34 | * |
---|
35 | *void erase(Item) : deletes Item from the heap if it was already there |
---|
36 | * |
---|
37 | *void decrease(Item, P) : decreases prio of Item to P. |
---|
38 | * Item must be in the heap with prio at least P. |
---|
39 | * |
---|
40 | *void increase(Item, P) : sets prio of Item to P. |
---|
41 | * |
---|
42 | *state_enum state(Item) : returns PRE_HEAP if Item has not been in the |
---|
43 | * heap until now, IN_HEAP if it is in the heap at the moment, and |
---|
44 | * POST_HEAP otherwise. In the latter case it is possible that Item |
---|
45 | * will get back to the heap again. |
---|
46 | * |
---|
47 | *In Fibonacci heaps, increase and erase are not efficient, in case of |
---|
48 | *many calls to these operations, it is better to use bin_heap. |
---|
49 | */ |
---|
50 | |
---|
51 | #ifndef FIB_HEAP_H |
---|
52 | #define FIB_HEAP_H |
---|
53 | |
---|
54 | #include <vector> |
---|
55 | #include <functional> |
---|
56 | #include <math.h> |
---|
57 | |
---|
58 | namespace hugo { |
---|
59 | |
---|
60 | template <typename Item, typename Prio, typename ItemIntMap, |
---|
61 | typename Compare = std::less<Prio> > |
---|
62 | |
---|
63 | class FibHeap { |
---|
64 | |
---|
65 | typedef Prio PrioType; |
---|
66 | |
---|
67 | class store; |
---|
68 | |
---|
69 | std::vector<store> container; |
---|
70 | int minimum; |
---|
71 | ItemIntMap &iimap; |
---|
72 | Compare comp; |
---|
73 | int num_items; |
---|
74 | |
---|
75 | enum state_enum { |
---|
76 | IN_HEAP = 0, |
---|
77 | PRE_HEAP = -1, |
---|
78 | POST_HEAP = -2 |
---|
79 | }; |
---|
80 | |
---|
81 | public : |
---|
82 | |
---|
83 | FibHeap(ItemIntMap &_iimap) : minimum(), iimap(_iimap), num_items() {} |
---|
84 | FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(), |
---|
85 | iimap(_iimap), comp(_comp), num_items() {} |
---|
86 | |
---|
87 | |
---|
88 | int size() const { |
---|
89 | return num_items; |
---|
90 | } |
---|
91 | |
---|
92 | |
---|
93 | bool empty() const { return num_items==0; } |
---|
94 | |
---|
95 | |
---|
96 | void set (Item const it, PrioType const value) { |
---|
97 | int i=iimap[it]; |
---|
98 | if ( i >= 0 && container[i].in ) { |
---|
99 | if ( comp(value, container[i].prio) ) decrease(it, value); |
---|
100 | if ( comp(container[i].prio, value) ) increase(it, value); |
---|
101 | } else push(it, value); |
---|
102 | } |
---|
103 | |
---|
104 | |
---|
105 | void push (Item const it, PrioType const value) { |
---|
106 | int i=iimap[it]; |
---|
107 | if ( i < 0 ) { |
---|
108 | int s=container.size(); |
---|
109 | iimap.set( it, s ); |
---|
110 | store st; |
---|
111 | st.name=it; |
---|
112 | container.push_back(st); |
---|
113 | i=s; |
---|
114 | } else { |
---|
115 | container[i].parent=container[i].child=-1; |
---|
116 | container[i].degree=0; |
---|
117 | container[i].in=true; |
---|
118 | container[i].marked=false; |
---|
119 | } |
---|
120 | |
---|
121 | if ( num_items ) { |
---|
122 | container[container[minimum].right_neighbor].left_neighbor=i; |
---|
123 | container[i].right_neighbor=container[minimum].right_neighbor; |
---|
124 | container[minimum].right_neighbor=i; |
---|
125 | container[i].left_neighbor=minimum; |
---|
126 | if ( comp( value, container[minimum].prio) ) minimum=i; |
---|
127 | } else { |
---|
128 | container[i].right_neighbor=container[i].left_neighbor=i; |
---|
129 | minimum=i; |
---|
130 | } |
---|
131 | container[i].prio=value; |
---|
132 | ++num_items; |
---|
133 | } |
---|
134 | |
---|
135 | |
---|
136 | Item top() const { |
---|
137 | return container[minimum].name; |
---|
138 | } |
---|
139 | |
---|
140 | |
---|
141 | PrioType prio() const { |
---|
142 | return container[minimum].prio; |
---|
143 | } |
---|
144 | |
---|
145 | |
---|
146 | PrioType& operator[](const Item& it) { |
---|
147 | return container[iimap[it]].prio; |
---|
148 | } |
---|
149 | |
---|
150 | |
---|
151 | const PrioType& operator[](const Item& it) const { |
---|
152 | return container[iimap[it]].prio; |
---|
153 | } |
---|
154 | |
---|
155 | |
---|
156 | const PrioType get(const Item& it) const { |
---|
157 | return container[iimap[it]].prio; |
---|
158 | } |
---|
159 | |
---|
160 | void pop() { |
---|
161 | /*The first case is that there are only one root.*/ |
---|
162 | if ( container[minimum].left_neighbor==minimum ) { |
---|
163 | container[minimum].in=false; |
---|
164 | if ( container[minimum].degree!=0 ) { |
---|
165 | makeroot(container[minimum].child); |
---|
166 | minimum=container[minimum].child; |
---|
167 | balance(); |
---|
168 | } |
---|
169 | } else { |
---|
170 | int right=container[minimum].right_neighbor; |
---|
171 | unlace(minimum); |
---|
172 | container[minimum].in=false; |
---|
173 | if ( container[minimum].degree > 0 ) { |
---|
174 | int left=container[minimum].left_neighbor; |
---|
175 | int child=container[minimum].child; |
---|
176 | int last_child=container[child].left_neighbor; |
---|
177 | |
---|
178 | makeroot(child); |
---|
179 | |
---|
180 | container[left].right_neighbor=child; |
---|
181 | container[child].left_neighbor=left; |
---|
182 | container[right].left_neighbor=last_child; |
---|
183 | container[last_child].right_neighbor=right; |
---|
184 | } |
---|
185 | minimum=right; |
---|
186 | balance(); |
---|
187 | } // the case where there are more roots |
---|
188 | --num_items; |
---|
189 | } |
---|
190 | |
---|
191 | |
---|
192 | void erase (const Item& it) { |
---|
193 | int i=iimap[it]; |
---|
194 | |
---|
195 | if ( i >= 0 && container[i].in ) { |
---|
196 | if ( container[i].parent!=-1 ) { |
---|
197 | int p=container[i].parent; |
---|
198 | cut(i,p); |
---|
199 | cascade(p); |
---|
200 | } |
---|
201 | minimum=i; //As if its prio would be -infinity |
---|
202 | pop(); |
---|
203 | } |
---|
204 | } |
---|
205 | |
---|
206 | |
---|
207 | void decrease (Item it, PrioType const value) { |
---|
208 | int i=iimap[it]; |
---|
209 | container[i].prio=value; |
---|
210 | int p=container[i].parent; |
---|
211 | |
---|
212 | if ( p!=-1 && comp(value, container[p].prio) ) { |
---|
213 | cut(i,p); |
---|
214 | cascade(p); |
---|
215 | } |
---|
216 | if ( comp(value, container[minimum].prio) ) minimum=i; |
---|
217 | } |
---|
218 | |
---|
219 | |
---|
220 | void increase (Item it, PrioType const value) { |
---|
221 | erase(it); |
---|
222 | push(it, value); |
---|
223 | } |
---|
224 | |
---|
225 | |
---|
226 | state_enum state(const Item &it) const { |
---|
227 | int i=iimap[it]; |
---|
228 | if( i>=0 ) { |
---|
229 | if ( container[i].in ) i=IN_HEAP; |
---|
230 | else i=POST_HEAP; |
---|
231 | } |
---|
232 | return state_enum(i); |
---|
233 | } |
---|
234 | |
---|
235 | |
---|
236 | private: |
---|
237 | |
---|
238 | void balance() { |
---|
239 | |
---|
240 | int maxdeg=int( floor( 2.08*log(double(container.size()))))+1; |
---|
241 | |
---|
242 | std::vector<int> A(maxdeg,-1); |
---|
243 | |
---|
244 | /* |
---|
245 | *Recall that now minimum does not point to the minimum prio element. |
---|
246 | *We set minimum to this during balance(). |
---|
247 | */ |
---|
248 | int anchor=container[minimum].left_neighbor; |
---|
249 | int next=minimum; |
---|
250 | bool end=false; |
---|
251 | |
---|
252 | do { |
---|
253 | int active=next; |
---|
254 | if ( anchor==active ) end=true; |
---|
255 | int d=container[active].degree; |
---|
256 | next=container[active].right_neighbor; |
---|
257 | |
---|
258 | while (A[d]!=-1) { |
---|
259 | if( comp(container[active].prio, container[A[d]].prio) ) { |
---|
260 | fuse(active,A[d]); |
---|
261 | } else { |
---|
262 | fuse(A[d],active); |
---|
263 | active=A[d]; |
---|
264 | } |
---|
265 | A[d]=-1; |
---|
266 | ++d; |
---|
267 | } |
---|
268 | A[d]=active; |
---|
269 | } while ( !end ); |
---|
270 | |
---|
271 | |
---|
272 | while ( container[minimum].parent >=0 ) minimum=container[minimum].parent; |
---|
273 | int s=minimum; |
---|
274 | int m=minimum; |
---|
275 | do { |
---|
276 | if ( comp(container[s].prio, container[minimum].prio) ) minimum=s; |
---|
277 | s=container[s].right_neighbor; |
---|
278 | } while ( s != m ); |
---|
279 | } |
---|
280 | |
---|
281 | |
---|
282 | void makeroot (int c) { |
---|
283 | int s=c; |
---|
284 | do { |
---|
285 | container[s].parent=-1; |
---|
286 | s=container[s].right_neighbor; |
---|
287 | } while ( s != c ); |
---|
288 | } |
---|
289 | |
---|
290 | |
---|
291 | void cut (int a, int b) { |
---|
292 | /* |
---|
293 | *Replacing a from the children of b. |
---|
294 | */ |
---|
295 | --container[b].degree; |
---|
296 | |
---|
297 | if ( container[b].degree !=0 ) { |
---|
298 | int child=container[b].child; |
---|
299 | if ( child==a ) |
---|
300 | container[b].child=container[child].right_neighbor; |
---|
301 | unlace(a); |
---|
302 | } |
---|
303 | |
---|
304 | |
---|
305 | /*Lacing a to the roots.*/ |
---|
306 | int right=container[minimum].right_neighbor; |
---|
307 | container[minimum].right_neighbor=a; |
---|
308 | container[a].left_neighbor=minimum; |
---|
309 | container[a].right_neighbor=right; |
---|
310 | container[right].left_neighbor=a; |
---|
311 | |
---|
312 | container[a].parent=-1; |
---|
313 | container[a].marked=false; |
---|
314 | } |
---|
315 | |
---|
316 | |
---|
317 | void cascade (int a) |
---|
318 | { |
---|
319 | if ( container[a].parent!=-1 ) { |
---|
320 | int p=container[a].parent; |
---|
321 | |
---|
322 | if ( container[a].marked==false ) container[a].marked=true; |
---|
323 | else { |
---|
324 | cut(a,p); |
---|
325 | cascade(p); |
---|
326 | } |
---|
327 | } |
---|
328 | } |
---|
329 | |
---|
330 | |
---|
331 | void fuse (int a, int b) { |
---|
332 | unlace(b); |
---|
333 | |
---|
334 | /*Lacing b under a.*/ |
---|
335 | container[b].parent=a; |
---|
336 | |
---|
337 | if (container[a].degree==0) { |
---|
338 | container[b].left_neighbor=b; |
---|
339 | container[b].right_neighbor=b; |
---|
340 | container[a].child=b; |
---|
341 | } else { |
---|
342 | int child=container[a].child; |
---|
343 | int last_child=container[child].left_neighbor; |
---|
344 | container[child].left_neighbor=b; |
---|
345 | container[b].right_neighbor=child; |
---|
346 | container[last_child].right_neighbor=b; |
---|
347 | container[b].left_neighbor=last_child; |
---|
348 | } |
---|
349 | |
---|
350 | ++container[a].degree; |
---|
351 | |
---|
352 | container[b].marked=false; |
---|
353 | } |
---|
354 | |
---|
355 | |
---|
356 | /* |
---|
357 | *It is invoked only if a has siblings. |
---|
358 | */ |
---|
359 | void unlace (int a) { |
---|
360 | int leftn=container[a].left_neighbor; |
---|
361 | int rightn=container[a].right_neighbor; |
---|
362 | container[leftn].right_neighbor=rightn; |
---|
363 | container[rightn].left_neighbor=leftn; |
---|
364 | } |
---|
365 | |
---|
366 | |
---|
367 | class store { |
---|
368 | friend class FibHeap; |
---|
369 | |
---|
370 | Item name; |
---|
371 | int parent; |
---|
372 | int left_neighbor; |
---|
373 | int right_neighbor; |
---|
374 | int child; |
---|
375 | int degree; |
---|
376 | bool marked; |
---|
377 | bool in; |
---|
378 | PrioType prio; |
---|
379 | |
---|
380 | store() : parent(-1), child(-1), degree(), marked(false), in(true) {} |
---|
381 | }; |
---|
382 | |
---|
383 | }; |
---|
384 | |
---|
385 | } //namespace hugo |
---|
386 | #endif |
---|