| [534] | 1 | // -*- c++ -*- | 
|---|
 | 2 | #include <vector> | 
|---|
 | 3 | #include <cstdlib> | 
|---|
 | 4 |  | 
|---|
| [605] | 5 | // ///\ingroup gwrappers | 
|---|
 | 6 | ///\file | 
|---|
 | 7 | ///\brief Graph generator functions. | 
|---|
 | 8 | /// | 
|---|
 | 9 | ///This file contains several graph generator functions. | 
|---|
 | 10 | /// | 
|---|
 | 11 | // ///\author Marton Makai | 
|---|
 | 12 |  | 
|---|
| [921] | 13 | namespace lemon { | 
|---|
| [534] | 14 |  | 
|---|
 | 15 |  | 
|---|
 | 16 |   /** | 
|---|
 | 17 |    * Inicializalja a veletlenszamgeneratort. | 
|---|
 | 18 |    * Figyelem, ez nem jo igazi random szamokhoz, | 
|---|
 | 19 |    * erre ne bizzad a titkaidat! | 
|---|
 | 20 |    */ | 
|---|
 | 21 |   void random_init() | 
|---|
 | 22 |   { | 
|---|
 | 23 |     unsigned int seed = getpid(); | 
|---|
 | 24 |     seed |= seed << 15; | 
|---|
 | 25 |     seed ^= time(0); | 
|---|
 | 26 |  | 
|---|
 | 27 |     srand(seed); | 
|---|
 | 28 |   } | 
|---|
 | 29 |  | 
|---|
 | 30 |  | 
|---|
 | 31 |   /** | 
|---|
 | 32 |    * Egy veletlen int-et ad vissza 0 es m-1 kozott. | 
|---|
 | 33 |    */ | 
|---|
 | 34 |   int random(int m) | 
|---|
 | 35 |   { | 
|---|
 | 36 |     return int( double(m) * rand() / (RAND_MAX + 1.0) ); | 
|---|
 | 37 |   } | 
|---|
 | 38 |  | 
|---|
 | 39 |  | 
|---|
| [558] | 40 |   /// Generates a random graph with n nodes and m edges. | 
|---|
 | 41 |   /// Before generating the random graph, \c g.clear() is called. | 
|---|
| [534] | 42 |   template<typename Graph> | 
|---|
| [558] | 43 |   void randomGraph(Graph& g, int n, int m) { | 
|---|
| [534] | 44 |     g.clear(); | 
|---|
| [558] | 45 |     std::vector<typename Graph::Node> nodes; | 
|---|
| [534] | 46 |     for (int i=0; i<n; ++i) | 
|---|
 | 47 |       nodes.push_back(g.addNode()); | 
|---|
 | 48 |     for (int i=0; i<m; ++i)  | 
|---|
 | 49 |       g.addEdge(nodes[random(n)], nodes[random(n)]); | 
|---|
 | 50 |   } | 
|---|
 | 51 |  | 
|---|
| [558] | 52 |   /// Generates a random bipartite graph with a and b nodes  | 
|---|
 | 53 |   /// in the color classes and m edges. | 
|---|
 | 54 |   /// According to the bipartite graph concept, the resulting  | 
|---|
 | 55 |   /// graph is directed from the first class to the second one. | 
|---|
 | 56 |   /// Before generating the random graph, \c g.clear() is called. | 
|---|
 | 57 |   template<typename Graph> | 
|---|
 | 58 |   void randomBipartiteGraph(Graph& g, int a, int b, int m) { | 
|---|
 | 59 |     g.clear(); | 
|---|
 | 60 |     std::vector<typename Graph::Node> s_nodes; | 
|---|
 | 61 |     std::vector<typename Graph::Node> t_nodes; | 
|---|
 | 62 |     for (int i=0; i<a; ++i) | 
|---|
 | 63 |       ///\bug g.addNode(g.S_CLASS) would be better. | 
|---|
 | 64 |       s_nodes.push_back(g.addNode(false)); | 
|---|
 | 65 |     for (int i=0; i<b; ++i) | 
|---|
 | 66 |       ///\bug g.addNode(g.T_CLASS) would be better. | 
|---|
 | 67 |       t_nodes.push_back(g.addNode(true)); | 
|---|
 | 68 |     for (int i=0; i<m; ++i)  | 
|---|
 | 69 |       g.addEdge(s_nodes[random(a)], t_nodes[random(b)]); | 
|---|
 | 70 |   } | 
|---|
 | 71 |  | 
|---|
| [593] | 72 |   /// Generates a complete graph in the undirected sense  | 
|---|
| [598] | 73 |   /// with n nodes. | 
|---|
| [593] | 74 |   /// Before generating the random graph, \c g.clear() is called. | 
|---|
 | 75 |   template<typename Graph> | 
|---|
 | 76 |   void completeGraph(Graph& g, int n) { | 
|---|
 | 77 |     g.clear(); | 
|---|
 | 78 |     std::vector<typename Graph::Node> nodes; | 
|---|
 | 79 |     for (int i=0; i<n; ++i) | 
|---|
 | 80 |       nodes.push_back(g.addNode()); | 
|---|
 | 81 |     for (int i=0; i<n; ++i)  | 
|---|
 | 82 |       for (int j=i+1; j<n; ++j) | 
|---|
 | 83 |         g.addEdge(nodes[i], nodes[j]); | 
|---|
 | 84 |   } | 
|---|
| [598] | 85 |  | 
|---|
 | 86 |   /// Generates a complete bidirected graph on n nodes. | 
|---|
 | 87 |   /// Before generating the random graph, \c g.clear() is called. | 
|---|
 | 88 |   template<typename Graph> | 
|---|
 | 89 |   void completeBidirectedGraph(Graph& g, int n) { | 
|---|
 | 90 |     g.clear(); | 
|---|
 | 91 |     std::vector<typename Graph::Node> nodes; | 
|---|
 | 92 |     for (int i=0; i<n; ++i) | 
|---|
 | 93 |       nodes.push_back(g.addNode()); | 
|---|
 | 94 |     for (int i=0; i<n; ++i)  | 
|---|
 | 95 |       for (int j=i+1; j<n; ++j) { | 
|---|
 | 96 |         g.addEdge(nodes[i], nodes[j]);   | 
|---|
 | 97 |         g.addEdge(nodes[j], nodes[i]); | 
|---|
 | 98 |       } | 
|---|
 | 99 |   } | 
|---|
 | 100 |  | 
|---|
 | 101 |   /// Generates a complete bipartite graph with a and b nodes  | 
|---|
 | 102 |   /// in the color classes. | 
|---|
 | 103 |   /// Before generating the random graph, \c g.clear() is called. | 
|---|
 | 104 |   template<typename Graph> | 
|---|
 | 105 |   void completeBipartiteGraph(Graph& g, int a, int b) { | 
|---|
 | 106 |     g.clear(); | 
|---|
 | 107 |     std::vector<typename Graph::Node> s_nodes; | 
|---|
 | 108 |     std::vector<typename Graph::Node> t_nodes; | 
|---|
 | 109 |     for (int i=0; i<a; ++i) | 
|---|
 | 110 |       ///\bug g.addNode(g.S_CLASS) would be better. | 
|---|
 | 111 |       s_nodes.push_back(g.addNode(false)); | 
|---|
 | 112 |     for (int i=0; i<b; ++i) | 
|---|
 | 113 |       ///\bug g.addNode(g.T_CLASS) would be better. | 
|---|
 | 114 |       t_nodes.push_back(g.addNode(true)); | 
|---|
 | 115 |     for (int i=0; i<a; ++i)  | 
|---|
 | 116 |       for (int j=0; j<b; ++j)        | 
|---|
 | 117 |         g.addEdge(s_nodes[i], t_nodes[j]); | 
|---|
 | 118 |   } | 
|---|
| [593] | 119 |    | 
|---|
| [921] | 120 | } //namespace lemon | 
|---|