| 1 | // -*- C++ -*- | 
|---|
| 2 | #ifndef HUGO_MAX_FLOW_H | 
|---|
| 3 | #define HUGO_MAX_FLOW_H | 
|---|
| 4 |  | 
|---|
| 5 | #include <vector> | 
|---|
| 6 | #include <queue> | 
|---|
| 7 | #include <stack> | 
|---|
| 8 |  | 
|---|
| 9 | #include <hugo/graph_wrapper.h> | 
|---|
| 10 | #include <bfs_dfs.h> | 
|---|
| 11 | #include <hugo/invalid.h> | 
|---|
| 12 | #include <hugo/maps.h> | 
|---|
| 13 | #include <hugo/for_each_macros.h> | 
|---|
| 14 |  | 
|---|
| 15 | /// \file | 
|---|
| 16 | /// \brief Maximum flow algorithms. | 
|---|
| 17 | /// \ingroup galgs | 
|---|
| 18 |  | 
|---|
| 19 | namespace hugo { | 
|---|
| 20 |  | 
|---|
| 21 |   /// \addtogroup galgs | 
|---|
| 22 |   /// @{                                                                                                                                         | 
|---|
| 23 |   ///Maximum flow algorithms class. | 
|---|
| 24 |  | 
|---|
| 25 |   ///This class provides various algorithms for finding a flow of | 
|---|
| 26 |   ///maximum value in a directed graph. The \e source node, the \e | 
|---|
| 27 |   ///target node, the \e capacity of the edges and the \e starting \e | 
|---|
| 28 |   ///flow value of the edges should be passed to the algorithm through the | 
|---|
| 29 |   ///constructor. It is possible to change these quantities using the | 
|---|
| 30 |   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and | 
|---|
| 31 |   ///\ref resetFlow. Before any subsequent runs of any algorithm of | 
|---|
| 32 |   ///the class \ref resetFlow should be called.  | 
|---|
| 33 |  | 
|---|
| 34 |   ///After running an algorithm of the class, the actual flow value  | 
|---|
| 35 |   ///can be obtained by calling \ref flowValue(). The minimum | 
|---|
| 36 |   ///value cut can be written into a \c node map of \c bools by | 
|---|
| 37 |   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes | 
|---|
| 38 |   ///the inclusionwise minimum and maximum of the minimum value | 
|---|
| 39 |   ///cuts, resp.)                                                                                                                                | 
|---|
| 40 |   ///\param Graph The directed graph type the algorithm runs on. | 
|---|
| 41 |   ///\param Num The number type of the capacities and the flow values. | 
|---|
| 42 |   ///\param CapMap The capacity map type. | 
|---|
| 43 |   ///\param FlowMap The flow map type.                                                                                                            | 
|---|
| 44 |   ///\author Marton Makai, Jacint Szabo  | 
|---|
| 45 |   template <typename Graph, typename Num, | 
|---|
| 46 |             typename CapMap=typename Graph::template EdgeMap<Num>, | 
|---|
| 47 |             typename FlowMap=typename Graph::template EdgeMap<Num> > | 
|---|
| 48 |   class MaxFlow { | 
|---|
| 49 |   protected: | 
|---|
| 50 |     typedef typename Graph::Node Node; | 
|---|
| 51 |     typedef typename Graph::NodeIt NodeIt; | 
|---|
| 52 |     typedef typename Graph::EdgeIt EdgeIt; | 
|---|
| 53 |     typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 54 |     typedef typename Graph::InEdgeIt InEdgeIt; | 
|---|
| 55 |  | 
|---|
| 56 |     typedef typename std::vector<std::stack<Node> > VecStack; | 
|---|
| 57 |     typedef typename Graph::template NodeMap<Node> NNMap; | 
|---|
| 58 |     typedef typename std::vector<Node> VecNode; | 
|---|
| 59 |  | 
|---|
| 60 |     const Graph* g; | 
|---|
| 61 |     Node s; | 
|---|
| 62 |     Node t; | 
|---|
| 63 |     const CapMap* capacity; | 
|---|
| 64 |     FlowMap* flow; | 
|---|
| 65 |     int n;      //the number of nodes of G | 
|---|
| 66 |     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;    | 
|---|
| 67 |     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; | 
|---|
| 68 |     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; | 
|---|
| 69 |     typedef typename ResGW::Edge ResGWEdge; | 
|---|
| 70 |     //typedef typename ResGW::template NodeMap<bool> ReachedMap; | 
|---|
| 71 |     typedef typename Graph::template NodeMap<int> ReachedMap; | 
|---|
| 72 |  | 
|---|
| 73 |  | 
|---|
| 74 |     //level works as a bool map in augmenting path algorithms and is | 
|---|
| 75 |     //used by bfs for storing reached information.  In preflow, it | 
|---|
| 76 |     //shows the levels of nodes.      | 
|---|
| 77 |     ReachedMap level; | 
|---|
| 78 |  | 
|---|
| 79 |     //excess is needed only in preflow | 
|---|
| 80 |     typename Graph::template NodeMap<Num> excess; | 
|---|
| 81 |  | 
|---|
| 82 |     //fixme     | 
|---|
| 83 | //   protected: | 
|---|
| 84 |     //     MaxFlow() { } | 
|---|
| 85 |     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, | 
|---|
| 86 |     //       FlowMap& _flow) | 
|---|
| 87 |     //       { | 
|---|
| 88 |     //  g=&_G; | 
|---|
| 89 |     //  s=_s; | 
|---|
| 90 |     //  t=_t; | 
|---|
| 91 |     //  capacity=&_capacity; | 
|---|
| 92 |     //  flow=&_flow; | 
|---|
| 93 |     //  n=_G.nodeNum; | 
|---|
| 94 |     //  level.set (_G); //kellene vmi ilyesmi fv | 
|---|
| 95 |     //  excess(_G,0); //itt is | 
|---|
| 96 |     //       } | 
|---|
| 97 |  | 
|---|
| 98 |     // constants used for heuristics | 
|---|
| 99 |     static const int H0=20; | 
|---|
| 100 |     static const int H1=1; | 
|---|
| 101 |  | 
|---|
| 102 |   public: | 
|---|
| 103 |  | 
|---|
| 104 |     ///Indicates the property of the starting flow. | 
|---|
| 105 |  | 
|---|
| 106 |     ///Indicates the property of the starting flow. The meanings are as follows: | 
|---|
| 107 |     ///- \c ZERO_FLOW: constant zero flow | 
|---|
| 108 |     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to | 
|---|
| 109 |     ///the sum of the out-flows in every node except the \e source and | 
|---|
| 110 |     ///the \e target. | 
|---|
| 111 |     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at  | 
|---|
| 112 |     ///least the sum of the out-flows in every node except the \e source. | 
|---|
| 113 |     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be  | 
|---|
| 114 |     ///set to the constant zero flow in the beginning of the algorithm in this case. | 
|---|
| 115 |     enum FlowEnum{ | 
|---|
| 116 |       ZERO_FLOW, | 
|---|
| 117 |       GEN_FLOW, | 
|---|
| 118 |       PRE_FLOW, | 
|---|
| 119 |       NO_FLOW | 
|---|
| 120 |     }; | 
|---|
| 121 |  | 
|---|
| 122 |     enum StatusEnum { | 
|---|
| 123 |       AFTER_NOTHING, | 
|---|
| 124 |       AFTER_AUGMENTING, | 
|---|
| 125 |       AFTER_FAST_AUGMENTING,  | 
|---|
| 126 |       AFTER_PRE_FLOW_PHASE_1,       | 
|---|
| 127 |       AFTER_PRE_FLOW_PHASE_2 | 
|---|
| 128 |     }; | 
|---|
| 129 |  | 
|---|
| 130 |     /// Don not needle this flag only if necessary. | 
|---|
| 131 |     StatusEnum status; | 
|---|
| 132 |     int number_of_augmentations; | 
|---|
| 133 |  | 
|---|
| 134 |  | 
|---|
| 135 |     template<typename IntMap> | 
|---|
| 136 |     class TrickyReachedMap { | 
|---|
| 137 |     protected: | 
|---|
| 138 |       IntMap* map; | 
|---|
| 139 |       int* number_of_augmentations; | 
|---|
| 140 |     public: | 
|---|
| 141 |       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) :  | 
|---|
| 142 |         map(&_map), number_of_augmentations(&_number_of_augmentations) { } | 
|---|
| 143 |       void set(const Node& n, bool b) { | 
|---|
| 144 |         if (b) | 
|---|
| 145 |           map->set(n, *number_of_augmentations); | 
|---|
| 146 |         else  | 
|---|
| 147 |           map->set(n, *number_of_augmentations-1); | 
|---|
| 148 |       } | 
|---|
| 149 |       bool operator[](const Node& n) const {  | 
|---|
| 150 |         return (*map)[n]==*number_of_augmentations;  | 
|---|
| 151 |       } | 
|---|
| 152 |     }; | 
|---|
| 153 |      | 
|---|
| 154 |     ///Constructor | 
|---|
| 155 |  | 
|---|
| 156 |     ///\todo Document, please. | 
|---|
| 157 |     /// | 
|---|
| 158 |     MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, | 
|---|
| 159 |             FlowMap& _flow) : | 
|---|
| 160 |       g(&_G), s(_s), t(_t), capacity(&_capacity), | 
|---|
| 161 |       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0),  | 
|---|
| 162 |       status(AFTER_NOTHING), number_of_augmentations(0) { } | 
|---|
| 163 |  | 
|---|
| 164 |     ///Runs a maximum flow algorithm. | 
|---|
| 165 |  | 
|---|
| 166 |     ///Runs a preflow algorithm, which is the fastest maximum flow | 
|---|
| 167 |     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW. | 
|---|
| 168 |     ///\pre The starting flow must be | 
|---|
| 169 |     /// - a constant zero flow if \c fe is \c ZERO_FLOW, | 
|---|
| 170 |     /// - an arbitary flow if \c fe is \c GEN_FLOW, | 
|---|
| 171 |     /// - an arbitary preflow if \c fe is \c PRE_FLOW, | 
|---|
| 172 |     /// - any map if \c fe is NO_FLOW. | 
|---|
| 173 |     void run(FlowEnum fe=ZERO_FLOW) { | 
|---|
| 174 |       preflow(fe); | 
|---|
| 175 |     } | 
|---|
| 176 |  | 
|---|
| 177 |                                                                                | 
|---|
| 178 |     ///Runs a preflow algorithm.   | 
|---|
| 179 |  | 
|---|
| 180 |     ///Runs a preflow algorithm. The preflow algorithms provide the | 
|---|
| 181 |     ///fastest way to compute a maximum flow in a directed graph. | 
|---|
| 182 |     ///\pre The starting flow must be | 
|---|
| 183 |     /// - a constant zero flow if \c fe is \c ZERO_FLOW, | 
|---|
| 184 |     /// - an arbitary flow if \c fe is \c GEN_FLOW, | 
|---|
| 185 |     /// - an arbitary preflow if \c fe is \c PRE_FLOW, | 
|---|
| 186 |     /// - any map if \c fe is NO_FLOW. | 
|---|
| 187 |     /// | 
|---|
| 188 |     ///\todo NO_FLOW should be the default flow. | 
|---|
| 189 |     void preflow(FlowEnum fe) { | 
|---|
| 190 |       preflowPhase1(fe); | 
|---|
| 191 |       preflowPhase2(); | 
|---|
| 192 |     } | 
|---|
| 193 |     // Heuristics: | 
|---|
| 194 |     //   2 phase | 
|---|
| 195 |     //   gap | 
|---|
| 196 |     //   list 'level_list' on the nodes on level i implemented by hand | 
|---|
| 197 |     //   stack 'active' on the active nodes on level i                                                                                     | 
|---|
| 198 |     //   runs heuristic 'highest label' for H1*n relabels | 
|---|
| 199 |     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' | 
|---|
| 200 |     //   Parameters H0 and H1 are initialized to 20 and 1. | 
|---|
| 201 |  | 
|---|
| 202 |     ///Runs the first phase of the preflow algorithm. | 
|---|
| 203 |  | 
|---|
| 204 |     ///The preflow algorithm consists of two phases, this method runs the | 
|---|
| 205 |     ///first phase. After the first phase the maximum flow value and a | 
|---|
| 206 |     ///minimum value cut can already be computed, though a maximum flow | 
|---|
| 207 |     ///is net yet obtained. So after calling this method \ref flowValue | 
|---|
| 208 |     ///and \ref actMinCut gives proper results. | 
|---|
| 209 |     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not | 
|---|
| 210 |     ///give minimum value cuts unless calling \ref preflowPhase2. | 
|---|
| 211 |     ///\pre The starting flow must be | 
|---|
| 212 |     /// - a constant zero flow if \c fe is \c ZERO_FLOW, | 
|---|
| 213 |     /// - an arbitary flow if \c fe is \c GEN_FLOW, | 
|---|
| 214 |     /// - an arbitary preflow if \c fe is \c PRE_FLOW, | 
|---|
| 215 |     /// - any map if \c fe is NO_FLOW. | 
|---|
| 216 |     void preflowPhase1(FlowEnum fe); | 
|---|
| 217 |  | 
|---|
| 218 |     ///Runs the second phase of the preflow algorithm. | 
|---|
| 219 |  | 
|---|
| 220 |     ///The preflow algorithm consists of two phases, this method runs | 
|---|
| 221 |     ///the second phase. After calling \ref preflowPhase1 and then | 
|---|
| 222 |     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut, | 
|---|
| 223 |     ///\ref minMinCut and \ref maxMinCut give proper results. | 
|---|
| 224 |     ///\pre \ref preflowPhase1 must be called before. | 
|---|
| 225 |     void preflowPhase2(); | 
|---|
| 226 |  | 
|---|
| 227 |     /// Starting from a flow, this method searches for an augmenting path | 
|---|
| 228 |     /// according to the Edmonds-Karp algorithm | 
|---|
| 229 |     /// and augments the flow on if any. | 
|---|
| 230 |     /// The return value shows if the augmentation was succesful. | 
|---|
| 231 |     bool augmentOnShortestPath(); | 
|---|
| 232 |     bool augmentOnShortestPath2(); | 
|---|
| 233 |  | 
|---|
| 234 |     /// Starting from a flow, this method searches for an augmenting blocking | 
|---|
| 235 |     /// flow according to Dinits' algorithm and augments the flow on if any. | 
|---|
| 236 |     /// The blocking flow is computed in a physically constructed | 
|---|
| 237 |     /// residual graph of type \c Mutablegraph. | 
|---|
| 238 |     /// The return value show sif the augmentation was succesful. | 
|---|
| 239 |     template<typename MutableGraph> bool augmentOnBlockingFlow(); | 
|---|
| 240 |  | 
|---|
| 241 |     /// The same as \c augmentOnBlockingFlow<MutableGraph> but the | 
|---|
| 242 |     /// residual graph is not constructed physically. | 
|---|
| 243 |     /// The return value shows if the augmentation was succesful. | 
|---|
| 244 |     bool augmentOnBlockingFlow2(); | 
|---|
| 245 |  | 
|---|
| 246 |     /// Returns the maximum value of a flow. | 
|---|
| 247 |  | 
|---|
| 248 |     /// Returns the maximum value of a flow, by counting the  | 
|---|
| 249 |     /// over-flow of the target node \ref t. | 
|---|
| 250 |     /// It can be called already after running \ref preflowPhase1. | 
|---|
| 251 |     Num flowValue() const { | 
|---|
| 252 |       Num a=0; | 
|---|
| 253 |       FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e]; | 
|---|
| 254 |       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e]; | 
|---|
| 255 |       return a; | 
|---|
| 256 |       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan    | 
|---|
| 257 |     } | 
|---|
| 258 |  | 
|---|
| 259 |     ///Returns a minimum value cut after calling \ref preflowPhase1. | 
|---|
| 260 |  | 
|---|
| 261 |     ///After the first phase of the preflow algorithm the maximum flow | 
|---|
| 262 |     ///value and a minimum value cut can already be computed. This | 
|---|
| 263 |     ///method can be called after running \ref preflowPhase1 for | 
|---|
| 264 |     ///obtaining a minimum value cut. | 
|---|
| 265 |     /// \warning Gives proper result only right after calling \ref | 
|---|
| 266 |     /// preflowPhase1. | 
|---|
| 267 |     /// \todo We have to make some status variable which shows the | 
|---|
| 268 |     /// actual state | 
|---|
| 269 |     /// of the class. This enables us to determine which methods are valid | 
|---|
| 270 |     /// for MinCut computation | 
|---|
| 271 |     template<typename _CutMap> | 
|---|
| 272 |     void actMinCut(_CutMap& M) const { | 
|---|
| 273 |       NodeIt v; | 
|---|
| 274 |       switch (status) { | 
|---|
| 275 |       case AFTER_PRE_FLOW_PHASE_1: | 
|---|
| 276 |         for(g->first(v); g->valid(v); g->next(v)) { | 
|---|
| 277 |           if (level[v] < n) { | 
|---|
| 278 |             M.set(v, false); | 
|---|
| 279 |           } else { | 
|---|
| 280 |             M.set(v, true); | 
|---|
| 281 |           } | 
|---|
| 282 |         } | 
|---|
| 283 |         break; | 
|---|
| 284 |       case AFTER_PRE_FLOW_PHASE_2: | 
|---|
| 285 |       case AFTER_NOTHING: | 
|---|
| 286 |         minMinCut(M); | 
|---|
| 287 |         break; | 
|---|
| 288 |       case AFTER_AUGMENTING: | 
|---|
| 289 |         for(g->first(v); g->valid(v); g->next(v)) { | 
|---|
| 290 |           if (level[v]) { | 
|---|
| 291 |             M.set(v, true); | 
|---|
| 292 |           } else { | 
|---|
| 293 |             M.set(v, false); | 
|---|
| 294 |           } | 
|---|
| 295 |         } | 
|---|
| 296 |         break; | 
|---|
| 297 |       case AFTER_FAST_AUGMENTING: | 
|---|
| 298 |         for(g->first(v); g->valid(v); g->next(v)) { | 
|---|
| 299 |           if (level[v]==number_of_augmentations) { | 
|---|
| 300 |             M.set(v, true); | 
|---|
| 301 |           } else { | 
|---|
| 302 |             M.set(v, false); | 
|---|
| 303 |           } | 
|---|
| 304 |         } | 
|---|
| 305 |         break; | 
|---|
| 306 |       } | 
|---|
| 307 |     } | 
|---|
| 308 |  | 
|---|
| 309 |     ///Returns the inclusionwise minimum of the minimum value cuts. | 
|---|
| 310 |  | 
|---|
| 311 |     ///Sets \c M to the characteristic vector of the minimum value cut | 
|---|
| 312 |     ///which is inclusionwise minimum. It is computed by processing | 
|---|
| 313 |     ///a bfs from the source node \c s in the residual graph. | 
|---|
| 314 |     ///\pre M should be a node map of bools initialized to false. | 
|---|
| 315 |     ///\pre \c flow must be a maximum flow. | 
|---|
| 316 |     template<typename _CutMap> | 
|---|
| 317 |     void minMinCut(_CutMap& M) const { | 
|---|
| 318 |       std::queue<Node> queue; | 
|---|
| 319 |  | 
|---|
| 320 |       M.set(s,true); | 
|---|
| 321 |       queue.push(s); | 
|---|
| 322 |  | 
|---|
| 323 |       while (!queue.empty()) { | 
|---|
| 324 |         Node w=queue.front(); | 
|---|
| 325 |         queue.pop(); | 
|---|
| 326 |  | 
|---|
| 327 |         OutEdgeIt e; | 
|---|
| 328 |         for(g->first(e,w) ; g->valid(e); g->next(e)) { | 
|---|
| 329 |           Node v=g->head(e); | 
|---|
| 330 |           if (!M[v] && (*flow)[e] < (*capacity)[e] ) { | 
|---|
| 331 |             queue.push(v); | 
|---|
| 332 |             M.set(v, true); | 
|---|
| 333 |           } | 
|---|
| 334 |         } | 
|---|
| 335 |  | 
|---|
| 336 |         InEdgeIt f; | 
|---|
| 337 |         for(g->first(f,w) ; g->valid(f); g->next(f)) { | 
|---|
| 338 |           Node v=g->tail(f); | 
|---|
| 339 |           if (!M[v] && (*flow)[f] > 0 ) { | 
|---|
| 340 |             queue.push(v); | 
|---|
| 341 |             M.set(v, true); | 
|---|
| 342 |           } | 
|---|
| 343 |         } | 
|---|
| 344 |       } | 
|---|
| 345 |     } | 
|---|
| 346 |  | 
|---|
| 347 |     ///Returns the inclusionwise maximum of the minimum value cuts. | 
|---|
| 348 |  | 
|---|
| 349 |     ///Sets \c M to the characteristic vector of the minimum value cut | 
|---|
| 350 |     ///which is inclusionwise maximum. It is computed by processing a | 
|---|
| 351 |     ///backward bfs from the target node \c t in the residual graph. | 
|---|
| 352 |     ///\pre M should be a node map of bools initialized to false. | 
|---|
| 353 |     ///\pre \c flow must be a maximum flow.  | 
|---|
| 354 |     template<typename _CutMap> | 
|---|
| 355 |     void maxMinCut(_CutMap& M) const { | 
|---|
| 356 |  | 
|---|
| 357 |       NodeIt v; | 
|---|
| 358 |       for(g->first(v) ; g->valid(v); g->next(v)) { | 
|---|
| 359 |         M.set(v, true); | 
|---|
| 360 |       } | 
|---|
| 361 |  | 
|---|
| 362 |       std::queue<Node> queue; | 
|---|
| 363 |  | 
|---|
| 364 |       M.set(t,false); | 
|---|
| 365 |       queue.push(t); | 
|---|
| 366 |  | 
|---|
| 367 |       while (!queue.empty()) { | 
|---|
| 368 |         Node w=queue.front(); | 
|---|
| 369 |         queue.pop(); | 
|---|
| 370 |  | 
|---|
| 371 |         InEdgeIt e; | 
|---|
| 372 |         for(g->first(e,w) ; g->valid(e); g->next(e)) { | 
|---|
| 373 |           Node v=g->tail(e); | 
|---|
| 374 |           if (M[v] && (*flow)[e] < (*capacity)[e] ) { | 
|---|
| 375 |             queue.push(v); | 
|---|
| 376 |             M.set(v, false); | 
|---|
| 377 |           } | 
|---|
| 378 |         } | 
|---|
| 379 |  | 
|---|
| 380 |         OutEdgeIt f; | 
|---|
| 381 |         for(g->first(f,w) ; g->valid(f); g->next(f)) { | 
|---|
| 382 |           Node v=g->head(f); | 
|---|
| 383 |           if (M[v] && (*flow)[f] > 0 ) { | 
|---|
| 384 |             queue.push(v); | 
|---|
| 385 |             M.set(v, false); | 
|---|
| 386 |           } | 
|---|
| 387 |         } | 
|---|
| 388 |       } | 
|---|
| 389 |     } | 
|---|
| 390 |  | 
|---|
| 391 |     ///Returns a minimum value cut. | 
|---|
| 392 |  | 
|---|
| 393 |     ///Sets \c M to the characteristic vector of a minimum value cut. | 
|---|
| 394 |     ///\pre M should be a node map of bools initialized to false. | 
|---|
| 395 |     ///\pre \c flow must be a maximum flow.     | 
|---|
| 396 |     template<typename CutMap> | 
|---|
| 397 |     void minCut(CutMap& M) const { minMinCut(M); } | 
|---|
| 398 |  | 
|---|
| 399 |     ///Resets the source node to \c _s. | 
|---|
| 400 |  | 
|---|
| 401 |     ///Resets the source node to \c _s. | 
|---|
| 402 |     ///  | 
|---|
| 403 |     void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; } | 
|---|
| 404 |  | 
|---|
| 405 |     ///Resets the target node to \c _t. | 
|---|
| 406 |  | 
|---|
| 407 |     ///Resets the target node to \c _t. | 
|---|
| 408 |     /// | 
|---|
| 409 |     void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; } | 
|---|
| 410 |  | 
|---|
| 411 |     /// Resets the edge map of the capacities to _cap. | 
|---|
| 412 |  | 
|---|
| 413 |     /// Resets the edge map of the capacities to _cap. | 
|---|
| 414 |     ///  | 
|---|
| 415 |     void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; } | 
|---|
| 416 |  | 
|---|
| 417 |     /// Resets the edge map of the flows to _flow. | 
|---|
| 418 |  | 
|---|
| 419 |     /// Resets the edge map of the flows to _flow. | 
|---|
| 420 |     ///  | 
|---|
| 421 |     void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; } | 
|---|
| 422 |  | 
|---|
| 423 |  | 
|---|
| 424 |   private: | 
|---|
| 425 |  | 
|---|
| 426 |     int push(Node w, VecStack& active) { | 
|---|
| 427 |  | 
|---|
| 428 |       int lev=level[w]; | 
|---|
| 429 |       Num exc=excess[w]; | 
|---|
| 430 |       int newlevel=n;       //bound on the next level of w | 
|---|
| 431 |  | 
|---|
| 432 |       OutEdgeIt e; | 
|---|
| 433 |       for(g->first(e,w); g->valid(e); g->next(e)) { | 
|---|
| 434 |  | 
|---|
| 435 |         if ( (*flow)[e] >= (*capacity)[e] ) continue; | 
|---|
| 436 |         Node v=g->head(e); | 
|---|
| 437 |  | 
|---|
| 438 |         if( lev > level[v] ) { //Push is allowed now | 
|---|
| 439 |  | 
|---|
| 440 |           if ( excess[v]<=0 && v!=t && v!=s ) { | 
|---|
| 441 |             int lev_v=level[v]; | 
|---|
| 442 |             active[lev_v].push(v); | 
|---|
| 443 |           } | 
|---|
| 444 |  | 
|---|
| 445 |           Num cap=(*capacity)[e]; | 
|---|
| 446 |           Num flo=(*flow)[e]; | 
|---|
| 447 |           Num remcap=cap-flo; | 
|---|
| 448 |  | 
|---|
| 449 |           if ( remcap >= exc ) { //A nonsaturating push. | 
|---|
| 450 |  | 
|---|
| 451 |             flow->set(e, flo+exc); | 
|---|
| 452 |             excess.set(v, excess[v]+exc); | 
|---|
| 453 |             exc=0; | 
|---|
| 454 |             break; | 
|---|
| 455 |  | 
|---|
| 456 |           } else { //A saturating push. | 
|---|
| 457 |             flow->set(e, cap); | 
|---|
| 458 |             excess.set(v, excess[v]+remcap); | 
|---|
| 459 |             exc-=remcap; | 
|---|
| 460 |           } | 
|---|
| 461 |         } else if ( newlevel > level[v] ) newlevel = level[v]; | 
|---|
| 462 |       } //for out edges wv | 
|---|
| 463 |  | 
|---|
| 464 |       if ( exc > 0 ) { | 
|---|
| 465 |         InEdgeIt e; | 
|---|
| 466 |         for(g->first(e,w); g->valid(e); g->next(e)) { | 
|---|
| 467 |  | 
|---|
| 468 |           if( (*flow)[e] <= 0 ) continue; | 
|---|
| 469 |           Node v=g->tail(e); | 
|---|
| 470 |  | 
|---|
| 471 |           if( lev > level[v] ) { //Push is allowed now | 
|---|
| 472 |  | 
|---|
| 473 |             if ( excess[v]<=0 && v!=t && v!=s ) { | 
|---|
| 474 |               int lev_v=level[v]; | 
|---|
| 475 |               active[lev_v].push(v); | 
|---|
| 476 |             } | 
|---|
| 477 |  | 
|---|
| 478 |             Num flo=(*flow)[e]; | 
|---|
| 479 |  | 
|---|
| 480 |             if ( flo >= exc ) { //A nonsaturating push. | 
|---|
| 481 |  | 
|---|
| 482 |               flow->set(e, flo-exc); | 
|---|
| 483 |               excess.set(v, excess[v]+exc); | 
|---|
| 484 |               exc=0; | 
|---|
| 485 |               break; | 
|---|
| 486 |             } else {  //A saturating push. | 
|---|
| 487 |  | 
|---|
| 488 |               excess.set(v, excess[v]+flo); | 
|---|
| 489 |               exc-=flo; | 
|---|
| 490 |               flow->set(e,0); | 
|---|
| 491 |             } | 
|---|
| 492 |           } else if ( newlevel > level[v] ) newlevel = level[v]; | 
|---|
| 493 |         } //for in edges vw | 
|---|
| 494 |  | 
|---|
| 495 |       } // if w still has excess after the out edge for cycle | 
|---|
| 496 |  | 
|---|
| 497 |       excess.set(w, exc); | 
|---|
| 498 |  | 
|---|
| 499 |       return newlevel; | 
|---|
| 500 |     } | 
|---|
| 501 |  | 
|---|
| 502 |  | 
|---|
| 503 |     void preflowPreproc(FlowEnum fe, VecStack& active, | 
|---|
| 504 |                         VecNode& level_list, NNMap& left, NNMap& right) | 
|---|
| 505 |     { | 
|---|
| 506 |       std::queue<Node> bfs_queue; | 
|---|
| 507 |  | 
|---|
| 508 |       switch (fe) { | 
|---|
| 509 |       case NO_FLOW:   //flow is already set to const zero in this case | 
|---|
| 510 |       case ZERO_FLOW: | 
|---|
| 511 |         { | 
|---|
| 512 |           //Reverse_bfs from t, to find the starting level. | 
|---|
| 513 |           level.set(t,0); | 
|---|
| 514 |           bfs_queue.push(t); | 
|---|
| 515 |  | 
|---|
| 516 |           while (!bfs_queue.empty()) { | 
|---|
| 517 |  | 
|---|
| 518 |             Node v=bfs_queue.front(); | 
|---|
| 519 |             bfs_queue.pop(); | 
|---|
| 520 |             int l=level[v]+1; | 
|---|
| 521 |  | 
|---|
| 522 |             InEdgeIt e; | 
|---|
| 523 |             for(g->first(e,v); g->valid(e); g->next(e)) { | 
|---|
| 524 |               Node w=g->tail(e); | 
|---|
| 525 |               if ( level[w] == n && w != s ) { | 
|---|
| 526 |                 bfs_queue.push(w); | 
|---|
| 527 |                 Node first=level_list[l]; | 
|---|
| 528 |                 if ( g->valid(first) ) left.set(first,w); | 
|---|
| 529 |                 right.set(w,first); | 
|---|
| 530 |                 level_list[l]=w; | 
|---|
| 531 |                 level.set(w, l); | 
|---|
| 532 |               } | 
|---|
| 533 |             } | 
|---|
| 534 |           } | 
|---|
| 535 |  | 
|---|
| 536 |           //the starting flow | 
|---|
| 537 |           OutEdgeIt e; | 
|---|
| 538 |           for(g->first(e,s); g->valid(e); g->next(e)) | 
|---|
| 539 |             { | 
|---|
| 540 |               Num c=(*capacity)[e]; | 
|---|
| 541 |               if ( c <= 0 ) continue; | 
|---|
| 542 |               Node w=g->head(e); | 
|---|
| 543 |               if ( level[w] < n ) { | 
|---|
| 544 |                 if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); | 
|---|
| 545 |                 flow->set(e, c); | 
|---|
| 546 |                 excess.set(w, excess[w]+c); | 
|---|
| 547 |               } | 
|---|
| 548 |             } | 
|---|
| 549 |           break; | 
|---|
| 550 |         } | 
|---|
| 551 |  | 
|---|
| 552 |       case GEN_FLOW: | 
|---|
| 553 |       case PRE_FLOW: | 
|---|
| 554 |         { | 
|---|
| 555 |           //Reverse_bfs from t in the residual graph, | 
|---|
| 556 |           //to find the starting level. | 
|---|
| 557 |           level.set(t,0); | 
|---|
| 558 |           bfs_queue.push(t); | 
|---|
| 559 |  | 
|---|
| 560 |           while (!bfs_queue.empty()) { | 
|---|
| 561 |  | 
|---|
| 562 |             Node v=bfs_queue.front(); | 
|---|
| 563 |             bfs_queue.pop(); | 
|---|
| 564 |             int l=level[v]+1; | 
|---|
| 565 |  | 
|---|
| 566 |             InEdgeIt e; | 
|---|
| 567 |             for(g->first(e,v); g->valid(e); g->next(e)) { | 
|---|
| 568 |               if ( (*capacity)[e] <= (*flow)[e] ) continue; | 
|---|
| 569 |               Node w=g->tail(e); | 
|---|
| 570 |               if ( level[w] == n && w != s ) { | 
|---|
| 571 |                 bfs_queue.push(w); | 
|---|
| 572 |                 Node first=level_list[l]; | 
|---|
| 573 |                 if ( g->valid(first) ) left.set(first,w); | 
|---|
| 574 |                 right.set(w,first); | 
|---|
| 575 |                 level_list[l]=w; | 
|---|
| 576 |                 level.set(w, l); | 
|---|
| 577 |               } | 
|---|
| 578 |             } | 
|---|
| 579 |  | 
|---|
| 580 |             OutEdgeIt f; | 
|---|
| 581 |             for(g->first(f,v); g->valid(f); g->next(f)) { | 
|---|
| 582 |               if ( 0 >= (*flow)[f] ) continue; | 
|---|
| 583 |               Node w=g->head(f); | 
|---|
| 584 |               if ( level[w] == n && w != s ) { | 
|---|
| 585 |                 bfs_queue.push(w); | 
|---|
| 586 |                 Node first=level_list[l]; | 
|---|
| 587 |                 if ( g->valid(first) ) left.set(first,w); | 
|---|
| 588 |                 right.set(w,first); | 
|---|
| 589 |                 level_list[l]=w; | 
|---|
| 590 |                 level.set(w, l); | 
|---|
| 591 |               } | 
|---|
| 592 |             } | 
|---|
| 593 |           } | 
|---|
| 594 |  | 
|---|
| 595 |  | 
|---|
| 596 |           //the starting flow | 
|---|
| 597 |           OutEdgeIt e; | 
|---|
| 598 |           for(g->first(e,s); g->valid(e); g->next(e)) | 
|---|
| 599 |             { | 
|---|
| 600 |               Num rem=(*capacity)[e]-(*flow)[e]; | 
|---|
| 601 |               if ( rem <= 0 ) continue; | 
|---|
| 602 |               Node w=g->head(e); | 
|---|
| 603 |               if ( level[w] < n ) { | 
|---|
| 604 |                 if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); | 
|---|
| 605 |                 flow->set(e, (*capacity)[e]); | 
|---|
| 606 |                 excess.set(w, excess[w]+rem); | 
|---|
| 607 |               } | 
|---|
| 608 |             } | 
|---|
| 609 |  | 
|---|
| 610 |           InEdgeIt f; | 
|---|
| 611 |           for(g->first(f,s); g->valid(f); g->next(f)) | 
|---|
| 612 |             { | 
|---|
| 613 |               if ( (*flow)[f] <= 0 ) continue; | 
|---|
| 614 |               Node w=g->tail(f); | 
|---|
| 615 |               if ( level[w] < n ) { | 
|---|
| 616 |                 if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); | 
|---|
| 617 |                 excess.set(w, excess[w]+(*flow)[f]); | 
|---|
| 618 |                 flow->set(f, 0); | 
|---|
| 619 |               } | 
|---|
| 620 |             } | 
|---|
| 621 |           break; | 
|---|
| 622 |         } //case PRE_FLOW | 
|---|
| 623 |       } | 
|---|
| 624 |     } //preflowPreproc | 
|---|
| 625 |  | 
|---|
| 626 |  | 
|---|
| 627 |  | 
|---|
| 628 |     void relabel(Node w, int newlevel, VecStack& active, | 
|---|
| 629 |                  VecNode& level_list, NNMap& left, | 
|---|
| 630 |                  NNMap& right, int& b, int& k, bool what_heur ) | 
|---|
| 631 |     { | 
|---|
| 632 |  | 
|---|
| 633 |       Num lev=level[w]; | 
|---|
| 634 |  | 
|---|
| 635 |       Node right_n=right[w]; | 
|---|
| 636 |       Node left_n=left[w]; | 
|---|
| 637 |  | 
|---|
| 638 |       //unlacing starts | 
|---|
| 639 |       if ( g->valid(right_n) ) { | 
|---|
| 640 |         if ( g->valid(left_n) ) { | 
|---|
| 641 |           right.set(left_n, right_n); | 
|---|
| 642 |           left.set(right_n, left_n); | 
|---|
| 643 |         } else { | 
|---|
| 644 |           level_list[lev]=right_n; | 
|---|
| 645 |           left.set(right_n, INVALID); | 
|---|
| 646 |         } | 
|---|
| 647 |       } else { | 
|---|
| 648 |         if ( g->valid(left_n) ) { | 
|---|
| 649 |           right.set(left_n, INVALID); | 
|---|
| 650 |         } else { | 
|---|
| 651 |           level_list[lev]=INVALID; | 
|---|
| 652 |         } | 
|---|
| 653 |       } | 
|---|
| 654 |       //unlacing ends | 
|---|
| 655 |  | 
|---|
| 656 |       if ( !g->valid(level_list[lev]) ) { | 
|---|
| 657 |  | 
|---|
| 658 |         //gapping starts | 
|---|
| 659 |         for (int i=lev; i!=k ; ) { | 
|---|
| 660 |           Node v=level_list[++i]; | 
|---|
| 661 |           while ( g->valid(v) ) { | 
|---|
| 662 |             level.set(v,n); | 
|---|
| 663 |             v=right[v]; | 
|---|
| 664 |           } | 
|---|
| 665 |           level_list[i]=INVALID; | 
|---|
| 666 |           if ( !what_heur ) { | 
|---|
| 667 |             while ( !active[i].empty() ) { | 
|---|
| 668 |               active[i].pop();    //FIXME: ezt szebben kene | 
|---|
| 669 |             } | 
|---|
| 670 |           } | 
|---|
| 671 |         } | 
|---|
| 672 |  | 
|---|
| 673 |         level.set(w,n); | 
|---|
| 674 |         b=lev-1; | 
|---|
| 675 |         k=b; | 
|---|
| 676 |         //gapping ends | 
|---|
| 677 |  | 
|---|
| 678 |       } else { | 
|---|
| 679 |  | 
|---|
| 680 |         if ( newlevel == n ) level.set(w,n); | 
|---|
| 681 |         else { | 
|---|
| 682 |           level.set(w,++newlevel); | 
|---|
| 683 |           active[newlevel].push(w); | 
|---|
| 684 |           if ( what_heur ) b=newlevel; | 
|---|
| 685 |           if ( k < newlevel ) ++k;      //now k=newlevel | 
|---|
| 686 |           Node first=level_list[newlevel]; | 
|---|
| 687 |           if ( g->valid(first) ) left.set(first,w); | 
|---|
| 688 |           right.set(w,first); | 
|---|
| 689 |           left.set(w,INVALID); | 
|---|
| 690 |           level_list[newlevel]=w; | 
|---|
| 691 |         } | 
|---|
| 692 |       } | 
|---|
| 693 |  | 
|---|
| 694 |     } //relabel | 
|---|
| 695 |  | 
|---|
| 696 |  | 
|---|
| 697 |     template<typename MapGraphWrapper> | 
|---|
| 698 |     class DistanceMap { | 
|---|
| 699 |     protected: | 
|---|
| 700 |       const MapGraphWrapper* g; | 
|---|
| 701 |       typename MapGraphWrapper::template NodeMap<int> dist; | 
|---|
| 702 |     public: | 
|---|
| 703 |       DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { } | 
|---|
| 704 |       void set(const typename MapGraphWrapper::Node& n, int a) { | 
|---|
| 705 |         dist.set(n, a); | 
|---|
| 706 |       } | 
|---|
| 707 |       int operator[](const typename MapGraphWrapper::Node& n) const {  | 
|---|
| 708 |         return dist[n];  | 
|---|
| 709 |       } | 
|---|
| 710 |       //       int get(const typename MapGraphWrapper::Node& n) const { | 
|---|
| 711 |       //        return dist[n]; } | 
|---|
| 712 |       //       bool get(const typename MapGraphWrapper::Edge& e) const { | 
|---|
| 713 |       //        return (dist.get(g->tail(e))<dist.get(g->head(e))); } | 
|---|
| 714 |       bool operator[](const typename MapGraphWrapper::Edge& e) const { | 
|---|
| 715 |         return (dist[g->tail(e)]<dist[g->head(e)]); | 
|---|
| 716 |       } | 
|---|
| 717 |     }; | 
|---|
| 718 |  | 
|---|
| 719 |   }; | 
|---|
| 720 |  | 
|---|
| 721 |  | 
|---|
| 722 |   template <typename Graph, typename Num, typename CapMap, typename FlowMap> | 
|---|
| 723 |   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe) | 
|---|
| 724 |   { | 
|---|
| 725 |  | 
|---|
| 726 |     int heur0=(int)(H0*n);  //time while running 'bound decrease' | 
|---|
| 727 |     int heur1=(int)(H1*n);  //time while running 'highest label' | 
|---|
| 728 |     int heur=heur1;         //starting time interval (#of relabels) | 
|---|
| 729 |     int numrelabel=0; | 
|---|
| 730 |  | 
|---|
| 731 |     bool what_heur=1; | 
|---|
| 732 |     //It is 0 in case 'bound decrease' and 1 in case 'highest label' | 
|---|
| 733 |  | 
|---|
| 734 |     bool end=false; | 
|---|
| 735 |     //Needed for 'bound decrease', true means no active nodes are above bound | 
|---|
| 736 |     //b. | 
|---|
| 737 |  | 
|---|
| 738 |     int k=n-2;  //bound on the highest level under n containing a node | 
|---|
| 739 |     int b=k;    //bound on the highest level under n of an active node | 
|---|
| 740 |  | 
|---|
| 741 |     VecStack active(n); | 
|---|
| 742 |  | 
|---|
| 743 |     NNMap left(*g, INVALID); | 
|---|
| 744 |     NNMap right(*g, INVALID); | 
|---|
| 745 |     VecNode level_list(n,INVALID); | 
|---|
| 746 |     //List of the nodes in level i<n, set to n. | 
|---|
| 747 |  | 
|---|
| 748 |     NodeIt v; | 
|---|
| 749 |     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n); | 
|---|
| 750 |     //setting each node to level n | 
|---|
| 751 |  | 
|---|
| 752 |     if ( fe == NO_FLOW ) { | 
|---|
| 753 |       EdgeIt e; | 
|---|
| 754 |       for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0); | 
|---|
| 755 |     } | 
|---|
| 756 |  | 
|---|
| 757 |     switch (fe) { //computing the excess | 
|---|
| 758 |     case PRE_FLOW: | 
|---|
| 759 |       { | 
|---|
| 760 |         NodeIt v; | 
|---|
| 761 |         for(g->first(v); g->valid(v); g->next(v)) { | 
|---|
| 762 |           Num exc=0; | 
|---|
| 763 |  | 
|---|
| 764 |           InEdgeIt e; | 
|---|
| 765 |           for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e]; | 
|---|
| 766 |           OutEdgeIt f; | 
|---|
| 767 |           for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f]; | 
|---|
| 768 |  | 
|---|
| 769 |           excess.set(v,exc); | 
|---|
| 770 |  | 
|---|
| 771 |           //putting the active nodes into the stack | 
|---|
| 772 |           int lev=level[v]; | 
|---|
| 773 |           if ( exc > 0 && lev < n && v != t ) active[lev].push(v); | 
|---|
| 774 |         } | 
|---|
| 775 |         break; | 
|---|
| 776 |       } | 
|---|
| 777 |     case GEN_FLOW: | 
|---|
| 778 |       { | 
|---|
| 779 |         NodeIt v; | 
|---|
| 780 |         for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0); | 
|---|
| 781 |  | 
|---|
| 782 |         Num exc=0; | 
|---|
| 783 |         InEdgeIt e; | 
|---|
| 784 |         for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e]; | 
|---|
| 785 |         OutEdgeIt f; | 
|---|
| 786 |         for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f]; | 
|---|
| 787 |         excess.set(t,exc); | 
|---|
| 788 |         break; | 
|---|
| 789 |       } | 
|---|
| 790 |     case ZERO_FLOW: | 
|---|
| 791 |     case NO_FLOW: | 
|---|
| 792 |       { | 
|---|
| 793 |         NodeIt v; | 
|---|
| 794 |         for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0); | 
|---|
| 795 |         break; | 
|---|
| 796 |       } | 
|---|
| 797 |     } | 
|---|
| 798 |  | 
|---|
| 799 |     preflowPreproc(fe, active, level_list, left, right); | 
|---|
| 800 |     //End of preprocessing | 
|---|
| 801 |  | 
|---|
| 802 |  | 
|---|
| 803 |     //Push/relabel on the highest level active nodes. | 
|---|
| 804 |     while ( true ) { | 
|---|
| 805 |       if ( b == 0 ) { | 
|---|
| 806 |         if ( !what_heur && !end && k > 0 ) { | 
|---|
| 807 |           b=k; | 
|---|
| 808 |           end=true; | 
|---|
| 809 |         } else break; | 
|---|
| 810 |       } | 
|---|
| 811 |  | 
|---|
| 812 |       if ( active[b].empty() ) --b; | 
|---|
| 813 |       else { | 
|---|
| 814 |         end=false; | 
|---|
| 815 |         Node w=active[b].top(); | 
|---|
| 816 |         active[b].pop(); | 
|---|
| 817 |         int newlevel=push(w,active); | 
|---|
| 818 |         if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, | 
|---|
| 819 |                                      left, right, b, k, what_heur); | 
|---|
| 820 |  | 
|---|
| 821 |         ++numrelabel; | 
|---|
| 822 |         if ( numrelabel >= heur ) { | 
|---|
| 823 |           numrelabel=0; | 
|---|
| 824 |           if ( what_heur ) { | 
|---|
| 825 |             what_heur=0; | 
|---|
| 826 |             heur=heur0; | 
|---|
| 827 |             end=false; | 
|---|
| 828 |           } else { | 
|---|
| 829 |             what_heur=1; | 
|---|
| 830 |             heur=heur1; | 
|---|
| 831 |             b=k; | 
|---|
| 832 |           } | 
|---|
| 833 |         } | 
|---|
| 834 |       } | 
|---|
| 835 |     } | 
|---|
| 836 |  | 
|---|
| 837 |     status=AFTER_PRE_FLOW_PHASE_1; | 
|---|
| 838 |   } | 
|---|
| 839 |  | 
|---|
| 840 |  | 
|---|
| 841 |  | 
|---|
| 842 |   template <typename Graph, typename Num, typename CapMap, typename FlowMap> | 
|---|
| 843 |   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2() | 
|---|
| 844 |   { | 
|---|
| 845 |  | 
|---|
| 846 |     int k=n-2;  //bound on the highest level under n containing a node | 
|---|
| 847 |     int b=k;    //bound on the highest level under n of an active node | 
|---|
| 848 |  | 
|---|
| 849 |     VecStack active(n); | 
|---|
| 850 |     level.set(s,0); | 
|---|
| 851 |     std::queue<Node> bfs_queue; | 
|---|
| 852 |     bfs_queue.push(s); | 
|---|
| 853 |  | 
|---|
| 854 |     while (!bfs_queue.empty()) { | 
|---|
| 855 |  | 
|---|
| 856 |       Node v=bfs_queue.front(); | 
|---|
| 857 |       bfs_queue.pop(); | 
|---|
| 858 |       int l=level[v]+1; | 
|---|
| 859 |  | 
|---|
| 860 |       InEdgeIt e; | 
|---|
| 861 |       for(g->first(e,v); g->valid(e); g->next(e)) { | 
|---|
| 862 |         if ( (*capacity)[e] <= (*flow)[e] ) continue; | 
|---|
| 863 |         Node u=g->tail(e); | 
|---|
| 864 |         if ( level[u] >= n ) { | 
|---|
| 865 |           bfs_queue.push(u); | 
|---|
| 866 |           level.set(u, l); | 
|---|
| 867 |           if ( excess[u] > 0 ) active[l].push(u); | 
|---|
| 868 |         } | 
|---|
| 869 |       } | 
|---|
| 870 |  | 
|---|
| 871 |       OutEdgeIt f; | 
|---|
| 872 |       for(g->first(f,v); g->valid(f); g->next(f)) { | 
|---|
| 873 |         if ( 0 >= (*flow)[f] ) continue; | 
|---|
| 874 |         Node u=g->head(f); | 
|---|
| 875 |         if ( level[u] >= n ) { | 
|---|
| 876 |           bfs_queue.push(u); | 
|---|
| 877 |           level.set(u, l); | 
|---|
| 878 |           if ( excess[u] > 0 ) active[l].push(u); | 
|---|
| 879 |         } | 
|---|
| 880 |       } | 
|---|
| 881 |     } | 
|---|
| 882 |     b=n-2; | 
|---|
| 883 |  | 
|---|
| 884 |     while ( true ) { | 
|---|
| 885 |  | 
|---|
| 886 |       if ( b == 0 ) break; | 
|---|
| 887 |  | 
|---|
| 888 |       if ( active[b].empty() ) --b; | 
|---|
| 889 |       else { | 
|---|
| 890 |         Node w=active[b].top(); | 
|---|
| 891 |         active[b].pop(); | 
|---|
| 892 |         int newlevel=push(w,active); | 
|---|
| 893 |  | 
|---|
| 894 |         //relabel | 
|---|
| 895 |         if ( excess[w] > 0 ) { | 
|---|
| 896 |           level.set(w,++newlevel); | 
|---|
| 897 |           active[newlevel].push(w); | 
|---|
| 898 |           b=newlevel; | 
|---|
| 899 |         } | 
|---|
| 900 |       }  // if stack[b] is nonempty | 
|---|
| 901 |     } // while(true) | 
|---|
| 902 |  | 
|---|
| 903 |     status=AFTER_PRE_FLOW_PHASE_2; | 
|---|
| 904 |   } | 
|---|
| 905 |  | 
|---|
| 906 |  | 
|---|
| 907 |  | 
|---|
| 908 |   template <typename Graph, typename Num, typename CapMap, typename FlowMap> | 
|---|
| 909 |   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath() | 
|---|
| 910 |   { | 
|---|
| 911 |     ResGW res_graph(*g, *capacity, *flow); | 
|---|
| 912 |     bool _augment=false; | 
|---|
| 913 |  | 
|---|
| 914 |     //ReachedMap level(res_graph); | 
|---|
| 915 |     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); | 
|---|
| 916 |     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); | 
|---|
| 917 |     bfs.pushAndSetReached(s); | 
|---|
| 918 |  | 
|---|
| 919 |     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); | 
|---|
| 920 |     pred.set(s, INVALID); | 
|---|
| 921 |  | 
|---|
| 922 |     typename ResGW::template NodeMap<Num> free(res_graph); | 
|---|
| 923 |  | 
|---|
| 924 |     //searching for augmenting path | 
|---|
| 925 |     while ( !bfs.finished() ) { | 
|---|
| 926 |       ResGWOutEdgeIt e=bfs; | 
|---|
| 927 |       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { | 
|---|
| 928 |         Node v=res_graph.tail(e); | 
|---|
| 929 |         Node w=res_graph.head(e); | 
|---|
| 930 |         pred.set(w, e); | 
|---|
| 931 |         if (res_graph.valid(pred[v])) { | 
|---|
| 932 |           free.set(w, std::min(free[v], res_graph.resCap(e))); | 
|---|
| 933 |         } else { | 
|---|
| 934 |           free.set(w, res_graph.resCap(e)); | 
|---|
| 935 |         } | 
|---|
| 936 |         if (res_graph.head(e)==t) { _augment=true; break; } | 
|---|
| 937 |       } | 
|---|
| 938 |  | 
|---|
| 939 |       ++bfs; | 
|---|
| 940 |     } //end of searching augmenting path | 
|---|
| 941 |  | 
|---|
| 942 |     if (_augment) { | 
|---|
| 943 |       Node n=t; | 
|---|
| 944 |       Num augment_value=free[t]; | 
|---|
| 945 |       while (res_graph.valid(pred[n])) { | 
|---|
| 946 |         ResGWEdge e=pred[n]; | 
|---|
| 947 |         res_graph.augment(e, augment_value); | 
|---|
| 948 |         n=res_graph.tail(e); | 
|---|
| 949 |       } | 
|---|
| 950 |     } | 
|---|
| 951 |  | 
|---|
| 952 |     status=AFTER_AUGMENTING; | 
|---|
| 953 |     return _augment; | 
|---|
| 954 |   } | 
|---|
| 955 |  | 
|---|
| 956 |  | 
|---|
| 957 |   template <typename Graph, typename Num, typename CapMap, typename FlowMap> | 
|---|
| 958 |   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2() | 
|---|
| 959 |   { | 
|---|
| 960 |     ResGW res_graph(*g, *capacity, *flow); | 
|---|
| 961 |     bool _augment=false; | 
|---|
| 962 |  | 
|---|
| 963 |     if (status!=AFTER_FAST_AUGMENTING) { | 
|---|
| 964 |       FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);  | 
|---|
| 965 |       number_of_augmentations=1; | 
|---|
| 966 |     } else { | 
|---|
| 967 |       ++number_of_augmentations; | 
|---|
| 968 |     } | 
|---|
| 969 |     TrickyReachedMap<ReachedMap>  | 
|---|
| 970 |       tricky_reached_map(level, number_of_augmentations); | 
|---|
| 971 |     //ReachedMap level(res_graph); | 
|---|
| 972 | //    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); | 
|---|
| 973 |     BfsIterator<ResGW, TrickyReachedMap<ReachedMap> >  | 
|---|
| 974 |       bfs(res_graph, tricky_reached_map); | 
|---|
| 975 |     bfs.pushAndSetReached(s); | 
|---|
| 976 |  | 
|---|
| 977 |     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); | 
|---|
| 978 |     pred.set(s, INVALID); | 
|---|
| 979 |  | 
|---|
| 980 |     typename ResGW::template NodeMap<Num> free(res_graph); | 
|---|
| 981 |  | 
|---|
| 982 |     //searching for augmenting path | 
|---|
| 983 |     while ( !bfs.finished() ) { | 
|---|
| 984 |       ResGWOutEdgeIt e=bfs; | 
|---|
| 985 |       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { | 
|---|
| 986 |         Node v=res_graph.tail(e); | 
|---|
| 987 |         Node w=res_graph.head(e); | 
|---|
| 988 |         pred.set(w, e); | 
|---|
| 989 |         if (res_graph.valid(pred[v])) { | 
|---|
| 990 |           free.set(w, std::min(free[v], res_graph.resCap(e))); | 
|---|
| 991 |         } else { | 
|---|
| 992 |           free.set(w, res_graph.resCap(e)); | 
|---|
| 993 |         } | 
|---|
| 994 |         if (res_graph.head(e)==t) { _augment=true; break; } | 
|---|
| 995 |       } | 
|---|
| 996 |  | 
|---|
| 997 |       ++bfs; | 
|---|
| 998 |     } //end of searching augmenting path | 
|---|
| 999 |  | 
|---|
| 1000 |     if (_augment) { | 
|---|
| 1001 |       Node n=t; | 
|---|
| 1002 |       Num augment_value=free[t]; | 
|---|
| 1003 |       while (res_graph.valid(pred[n])) { | 
|---|
| 1004 |         ResGWEdge e=pred[n]; | 
|---|
| 1005 |         res_graph.augment(e, augment_value); | 
|---|
| 1006 |         n=res_graph.tail(e); | 
|---|
| 1007 |       } | 
|---|
| 1008 |     } | 
|---|
| 1009 |  | 
|---|
| 1010 |     status=AFTER_FAST_AUGMENTING; | 
|---|
| 1011 |     return _augment; | 
|---|
| 1012 |   } | 
|---|
| 1013 |  | 
|---|
| 1014 |  | 
|---|
| 1015 |   template <typename Graph, typename Num, typename CapMap, typename FlowMap> | 
|---|
| 1016 |   template<typename MutableGraph> | 
|---|
| 1017 |   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow() | 
|---|
| 1018 |   { | 
|---|
| 1019 |     typedef MutableGraph MG; | 
|---|
| 1020 |     bool _augment=false; | 
|---|
| 1021 |  | 
|---|
| 1022 |     ResGW res_graph(*g, *capacity, *flow); | 
|---|
| 1023 |  | 
|---|
| 1024 |     //bfs for distances on the residual graph | 
|---|
| 1025 |     //ReachedMap level(res_graph); | 
|---|
| 1026 |     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); | 
|---|
| 1027 |     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); | 
|---|
| 1028 |     bfs.pushAndSetReached(s); | 
|---|
| 1029 |     typename ResGW::template NodeMap<int> | 
|---|
| 1030 |       dist(res_graph); //filled up with 0's | 
|---|
| 1031 |  | 
|---|
| 1032 |     //F will contain the physical copy of the residual graph | 
|---|
| 1033 |     //with the set of edges which are on shortest paths | 
|---|
| 1034 |     MG F; | 
|---|
| 1035 |     typename ResGW::template NodeMap<typename MG::Node> | 
|---|
| 1036 |       res_graph_to_F(res_graph); | 
|---|
| 1037 |     { | 
|---|
| 1038 |       typename ResGW::NodeIt n; | 
|---|
| 1039 |       for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) { | 
|---|
| 1040 |         res_graph_to_F.set(n, F.addNode()); | 
|---|
| 1041 |       } | 
|---|
| 1042 |     } | 
|---|
| 1043 |  | 
|---|
| 1044 |     typename MG::Node sF=res_graph_to_F[s]; | 
|---|
| 1045 |     typename MG::Node tF=res_graph_to_F[t]; | 
|---|
| 1046 |     typename MG::template EdgeMap<ResGWEdge> original_edge(F); | 
|---|
| 1047 |     typename MG::template EdgeMap<Num> residual_capacity(F); | 
|---|
| 1048 |  | 
|---|
| 1049 |     while ( !bfs.finished() ) { | 
|---|
| 1050 |       ResGWOutEdgeIt e=bfs; | 
|---|
| 1051 |       if (res_graph.valid(e)) { | 
|---|
| 1052 |         if (bfs.isBNodeNewlyReached()) { | 
|---|
| 1053 |           dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); | 
|---|
| 1054 |           typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], | 
|---|
| 1055 |                                         res_graph_to_F[res_graph.head(e)]); | 
|---|
| 1056 |           original_edge.update(); | 
|---|
| 1057 |           original_edge.set(f, e); | 
|---|
| 1058 |           residual_capacity.update(); | 
|---|
| 1059 |           residual_capacity.set(f, res_graph.resCap(e)); | 
|---|
| 1060 |         } else { | 
|---|
| 1061 |           if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) { | 
|---|
| 1062 |             typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], | 
|---|
| 1063 |                                           res_graph_to_F[res_graph.head(e)]); | 
|---|
| 1064 |             original_edge.update(); | 
|---|
| 1065 |             original_edge.set(f, e); | 
|---|
| 1066 |             residual_capacity.update(); | 
|---|
| 1067 |             residual_capacity.set(f, res_graph.resCap(e)); | 
|---|
| 1068 |           } | 
|---|
| 1069 |         } | 
|---|
| 1070 |       } | 
|---|
| 1071 |       ++bfs; | 
|---|
| 1072 |     } //computing distances from s in the residual graph | 
|---|
| 1073 |  | 
|---|
| 1074 |     bool __augment=true; | 
|---|
| 1075 |  | 
|---|
| 1076 |     while (__augment) { | 
|---|
| 1077 |       __augment=false; | 
|---|
| 1078 |       //computing blocking flow with dfs | 
|---|
| 1079 |       DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F); | 
|---|
| 1080 |       typename MG::template NodeMap<typename MG::Edge> pred(F); | 
|---|
| 1081 |       pred.set(sF, INVALID); | 
|---|
| 1082 |       //invalid iterators for sources | 
|---|
| 1083 |  | 
|---|
| 1084 |       typename MG::template NodeMap<Num> free(F); | 
|---|
| 1085 |  | 
|---|
| 1086 |       dfs.pushAndSetReached(sF); | 
|---|
| 1087 |       while (!dfs.finished()) { | 
|---|
| 1088 |         ++dfs; | 
|---|
| 1089 |         if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) { | 
|---|
| 1090 |           if (dfs.isBNodeNewlyReached()) { | 
|---|
| 1091 |             typename MG::Node v=F.aNode(dfs); | 
|---|
| 1092 |             typename MG::Node w=F.bNode(dfs); | 
|---|
| 1093 |             pred.set(w, dfs); | 
|---|
| 1094 |             if (F.valid(pred[v])) { | 
|---|
| 1095 |               free.set(w, std::min(free[v], residual_capacity[dfs])); | 
|---|
| 1096 |             } else { | 
|---|
| 1097 |               free.set(w, residual_capacity[dfs]); | 
|---|
| 1098 |             } | 
|---|
| 1099 |             if (w==tF) { | 
|---|
| 1100 |               __augment=true; | 
|---|
| 1101 |               _augment=true; | 
|---|
| 1102 |               break; | 
|---|
| 1103 |             } | 
|---|
| 1104 |  | 
|---|
| 1105 |           } else { | 
|---|
| 1106 |             F.erase(/*typename MG::OutEdgeIt*/(dfs)); | 
|---|
| 1107 |           } | 
|---|
| 1108 |         } | 
|---|
| 1109 |       } | 
|---|
| 1110 |  | 
|---|
| 1111 |       if (__augment) { | 
|---|
| 1112 |         typename MG::Node n=tF; | 
|---|
| 1113 |         Num augment_value=free[tF]; | 
|---|
| 1114 |         while (F.valid(pred[n])) { | 
|---|
| 1115 |           typename MG::Edge e=pred[n]; | 
|---|
| 1116 |           res_graph.augment(original_edge[e], augment_value); | 
|---|
| 1117 |           n=F.tail(e); | 
|---|
| 1118 |           if (residual_capacity[e]==augment_value) | 
|---|
| 1119 |             F.erase(e); | 
|---|
| 1120 |           else | 
|---|
| 1121 |             residual_capacity.set(e, residual_capacity[e]-augment_value); | 
|---|
| 1122 |         } | 
|---|
| 1123 |       } | 
|---|
| 1124 |  | 
|---|
| 1125 |     } | 
|---|
| 1126 |  | 
|---|
| 1127 |     status=AFTER_AUGMENTING; | 
|---|
| 1128 |     return _augment; | 
|---|
| 1129 |   } | 
|---|
| 1130 |  | 
|---|
| 1131 |  | 
|---|
| 1132 |  | 
|---|
| 1133 |  | 
|---|
| 1134 |   template <typename Graph, typename Num, typename CapMap, typename FlowMap> | 
|---|
| 1135 |   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2() | 
|---|
| 1136 |   { | 
|---|
| 1137 |     bool _augment=false; | 
|---|
| 1138 |  | 
|---|
| 1139 |     ResGW res_graph(*g, *capacity, *flow); | 
|---|
| 1140 |  | 
|---|
| 1141 |     //ReachedMap level(res_graph); | 
|---|
| 1142 |     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); | 
|---|
| 1143 |     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); | 
|---|
| 1144 |  | 
|---|
| 1145 |     bfs.pushAndSetReached(s); | 
|---|
| 1146 |     DistanceMap<ResGW> dist(res_graph); | 
|---|
| 1147 |     while ( !bfs.finished() ) { | 
|---|
| 1148 |       ResGWOutEdgeIt e=bfs; | 
|---|
| 1149 |       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { | 
|---|
| 1150 |         dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); | 
|---|
| 1151 |       } | 
|---|
| 1152 |       ++bfs; | 
|---|
| 1153 |     } //computing distances from s in the residual graph | 
|---|
| 1154 |  | 
|---|
| 1155 |       //Subgraph containing the edges on some shortest paths | 
|---|
| 1156 |     ConstMap<typename ResGW::Node, bool> true_map(true); | 
|---|
| 1157 |     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, | 
|---|
| 1158 |       DistanceMap<ResGW> > FilterResGW; | 
|---|
| 1159 |     FilterResGW filter_res_graph(res_graph, true_map, dist); | 
|---|
| 1160 |  | 
|---|
| 1161 |     //Subgraph, which is able to delete edges which are already | 
|---|
| 1162 |     //met by the dfs | 
|---|
| 1163 |     typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt> | 
|---|
| 1164 |       first_out_edges(filter_res_graph); | 
|---|
| 1165 |     typename FilterResGW::NodeIt v; | 
|---|
| 1166 |     for(filter_res_graph.first(v); filter_res_graph.valid(v); | 
|---|
| 1167 |         filter_res_graph.next(v)) | 
|---|
| 1168 |       { | 
|---|
| 1169 |         typename FilterResGW::OutEdgeIt e; | 
|---|
| 1170 |         filter_res_graph.first(e, v); | 
|---|
| 1171 |         first_out_edges.set(v, e); | 
|---|
| 1172 |       } | 
|---|
| 1173 |     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW:: | 
|---|
| 1174 |       template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW; | 
|---|
| 1175 |     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges); | 
|---|
| 1176 |  | 
|---|
| 1177 |     bool __augment=true; | 
|---|
| 1178 |  | 
|---|
| 1179 |     while (__augment) { | 
|---|
| 1180 |  | 
|---|
| 1181 |       __augment=false; | 
|---|
| 1182 |       //computing blocking flow with dfs | 
|---|
| 1183 |       DfsIterator< ErasingResGW, | 
|---|
| 1184 |         typename ErasingResGW::template NodeMap<bool> > | 
|---|
| 1185 |         dfs(erasing_res_graph); | 
|---|
| 1186 |       typename ErasingResGW:: | 
|---|
| 1187 |         template NodeMap<typename ErasingResGW::OutEdgeIt> | 
|---|
| 1188 |         pred(erasing_res_graph); | 
|---|
| 1189 |       pred.set(s, INVALID); | 
|---|
| 1190 |       //invalid iterators for sources | 
|---|
| 1191 |  | 
|---|
| 1192 |       typename ErasingResGW::template NodeMap<Num> | 
|---|
| 1193 |         free1(erasing_res_graph); | 
|---|
| 1194 |  | 
|---|
| 1195 |       dfs.pushAndSetReached | 
|---|
| 1196 |         ///\bug hugo 0.2 | 
|---|
| 1197 |         (typename ErasingResGW::Node | 
|---|
| 1198 |          (typename FilterResGW::Node | 
|---|
| 1199 |           (typename ResGW::Node(s) | 
|---|
| 1200 |            ) | 
|---|
| 1201 |           ) | 
|---|
| 1202 |          ); | 
|---|
| 1203 |       while (!dfs.finished()) { | 
|---|
| 1204 |         ++dfs; | 
|---|
| 1205 |         if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs))) | 
|---|
| 1206 |           { | 
|---|
| 1207 |             if (dfs.isBNodeNewlyReached()) { | 
|---|
| 1208 |  | 
|---|
| 1209 |               typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs); | 
|---|
| 1210 |               typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs); | 
|---|
| 1211 |  | 
|---|
| 1212 |               pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs)); | 
|---|
| 1213 |               if (erasing_res_graph.valid(pred[v])) { | 
|---|
| 1214 |                 free1.set | 
|---|
| 1215 |                   (w, std::min(free1[v], res_graph.resCap | 
|---|
| 1216 |                                (typename ErasingResGW::OutEdgeIt(dfs)))); | 
|---|
| 1217 |               } else { | 
|---|
| 1218 |                 free1.set | 
|---|
| 1219 |                   (w, res_graph.resCap | 
|---|
| 1220 |                    (typename ErasingResGW::OutEdgeIt(dfs))); | 
|---|
| 1221 |               } | 
|---|
| 1222 |  | 
|---|
| 1223 |               if (w==t) { | 
|---|
| 1224 |                 __augment=true; | 
|---|
| 1225 |                 _augment=true; | 
|---|
| 1226 |                 break; | 
|---|
| 1227 |               } | 
|---|
| 1228 |             } else { | 
|---|
| 1229 |               erasing_res_graph.erase(dfs); | 
|---|
| 1230 |             } | 
|---|
| 1231 |           } | 
|---|
| 1232 |       } | 
|---|
| 1233 |  | 
|---|
| 1234 |       if (__augment) { | 
|---|
| 1235 |         typename ErasingResGW::Node | 
|---|
| 1236 |           n=typename FilterResGW::Node(typename ResGW::Node(t)); | 
|---|
| 1237 |         //        typename ResGW::NodeMap<Num> a(res_graph); | 
|---|
| 1238 |         //        typename ResGW::Node b; | 
|---|
| 1239 |         //        Num j=a[b]; | 
|---|
| 1240 |         //        typename FilterResGW::NodeMap<Num> a1(filter_res_graph); | 
|---|
| 1241 |         //        typename FilterResGW::Node b1; | 
|---|
| 1242 |         //        Num j1=a1[b1]; | 
|---|
| 1243 |         //        typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph); | 
|---|
| 1244 |         //        typename ErasingResGW::Node b2; | 
|---|
| 1245 |         //        Num j2=a2[b2]; | 
|---|
| 1246 |         Num augment_value=free1[n]; | 
|---|
| 1247 |         while (erasing_res_graph.valid(pred[n])) { | 
|---|
| 1248 |           typename ErasingResGW::OutEdgeIt e=pred[n]; | 
|---|
| 1249 |           res_graph.augment(e, augment_value); | 
|---|
| 1250 |           n=erasing_res_graph.tail(e); | 
|---|
| 1251 |           if (res_graph.resCap(e)==0) | 
|---|
| 1252 |             erasing_res_graph.erase(e); | 
|---|
| 1253 |         } | 
|---|
| 1254 |       } | 
|---|
| 1255 |  | 
|---|
| 1256 |     } //while (__augment) | 
|---|
| 1257 |  | 
|---|
| 1258 |     status=AFTER_AUGMENTING; | 
|---|
| 1259 |     return _augment; | 
|---|
| 1260 |   } | 
|---|
| 1261 |  | 
|---|
| 1262 |  | 
|---|
| 1263 | } //namespace hugo | 
|---|
| 1264 |  | 
|---|
| 1265 | #endif //HUGO_MAX_FLOW_H | 
|---|
| 1266 |  | 
|---|
| 1267 |  | 
|---|
| 1268 |  | 
|---|
| 1269 |  | 
|---|