| 1 | // -*- C++ -*- |
|---|
| 2 | #ifndef LEMON_MAX_FLOW_H |
|---|
| 3 | #define LEMON_MAX_FLOW_H |
|---|
| 4 | |
|---|
| 5 | #include <vector> |
|---|
| 6 | #include <queue> |
|---|
| 7 | #include <stack> |
|---|
| 8 | |
|---|
| 9 | #include <lemon/graph_wrapper.h> |
|---|
| 10 | #include <bfs_dfs.h> |
|---|
| 11 | #include <lemon/invalid.h> |
|---|
| 12 | #include <lemon/maps.h> |
|---|
| 13 | #include <lemon/for_each_macros.h> |
|---|
| 14 | |
|---|
| 15 | /// \file |
|---|
| 16 | /// \brief Maximum flow algorithms. |
|---|
| 17 | /// \ingroup galgs |
|---|
| 18 | |
|---|
| 19 | namespace lemon { |
|---|
| 20 | |
|---|
| 21 | /// \addtogroup galgs |
|---|
| 22 | /// @{ |
|---|
| 23 | ///Maximum flow algorithms class. |
|---|
| 24 | |
|---|
| 25 | ///This class provides various algorithms for finding a flow of |
|---|
| 26 | ///maximum value in a directed graph. The \e source node, the \e |
|---|
| 27 | ///target node, the \e capacity of the edges and the \e starting \e |
|---|
| 28 | ///flow value of the edges should be passed to the algorithm through the |
|---|
| 29 | ///constructor. It is possible to change these quantities using the |
|---|
| 30 | ///functions \ref resetSource, \ref resetTarget, \ref resetCap and |
|---|
| 31 | ///\ref resetFlow. Before any subsequent runs of any algorithm of |
|---|
| 32 | ///the class \ref resetFlow should be called. |
|---|
| 33 | |
|---|
| 34 | ///After running an algorithm of the class, the actual flow value |
|---|
| 35 | ///can be obtained by calling \ref flowValue(). The minimum |
|---|
| 36 | ///value cut can be written into a \c node map of \c bools by |
|---|
| 37 | ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes |
|---|
| 38 | ///the inclusionwise minimum and maximum of the minimum value |
|---|
| 39 | ///cuts, resp.) |
|---|
| 40 | ///\param Graph The directed graph type the algorithm runs on. |
|---|
| 41 | ///\param Num The number type of the capacities and the flow values. |
|---|
| 42 | ///\param CapMap The capacity map type. |
|---|
| 43 | ///\param FlowMap The flow map type. |
|---|
| 44 | ///\author Marton Makai, Jacint Szabo |
|---|
| 45 | template <typename Graph, typename Num, |
|---|
| 46 | typename CapMap=typename Graph::template EdgeMap<Num>, |
|---|
| 47 | typename FlowMap=typename Graph::template EdgeMap<Num> > |
|---|
| 48 | class MaxFlow { |
|---|
| 49 | protected: |
|---|
| 50 | typedef typename Graph::Node Node; |
|---|
| 51 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 52 | typedef typename Graph::EdgeIt EdgeIt; |
|---|
| 53 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
|---|
| 54 | typedef typename Graph::InEdgeIt InEdgeIt; |
|---|
| 55 | |
|---|
| 56 | typedef typename std::vector<std::stack<Node> > VecStack; |
|---|
| 57 | typedef typename Graph::template NodeMap<Node> NNMap; |
|---|
| 58 | typedef typename std::vector<Node> VecNode; |
|---|
| 59 | |
|---|
| 60 | const Graph* g; |
|---|
| 61 | Node s; |
|---|
| 62 | Node t; |
|---|
| 63 | const CapMap* capacity; |
|---|
| 64 | FlowMap* flow; |
|---|
| 65 | int n; //the number of nodes of G |
|---|
| 66 | typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; |
|---|
| 67 | //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; |
|---|
| 68 | typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; |
|---|
| 69 | typedef typename ResGW::Edge ResGWEdge; |
|---|
| 70 | //typedef typename ResGW::template NodeMap<bool> ReachedMap; |
|---|
| 71 | typedef typename Graph::template NodeMap<int> ReachedMap; |
|---|
| 72 | |
|---|
| 73 | |
|---|
| 74 | //level works as a bool map in augmenting path algorithms and is |
|---|
| 75 | //used by bfs for storing reached information. In preflow, it |
|---|
| 76 | //shows the levels of nodes. |
|---|
| 77 | ReachedMap level; |
|---|
| 78 | |
|---|
| 79 | //excess is needed only in preflow |
|---|
| 80 | typename Graph::template NodeMap<Num> excess; |
|---|
| 81 | |
|---|
| 82 | //fixme |
|---|
| 83 | // protected: |
|---|
| 84 | // MaxFlow() { } |
|---|
| 85 | // void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, |
|---|
| 86 | // FlowMap& _flow) |
|---|
| 87 | // { |
|---|
| 88 | // g=&_G; |
|---|
| 89 | // s=_s; |
|---|
| 90 | // t=_t; |
|---|
| 91 | // capacity=&_capacity; |
|---|
| 92 | // flow=&_flow; |
|---|
| 93 | // n=_G.nodeNum; |
|---|
| 94 | // level.set (_G); //kellene vmi ilyesmi fv |
|---|
| 95 | // excess(_G,0); //itt is |
|---|
| 96 | // } |
|---|
| 97 | |
|---|
| 98 | // constants used for heuristics |
|---|
| 99 | static const int H0=20; |
|---|
| 100 | static const int H1=1; |
|---|
| 101 | |
|---|
| 102 | public: |
|---|
| 103 | |
|---|
| 104 | ///Indicates the property of the starting flow. |
|---|
| 105 | |
|---|
| 106 | ///Indicates the property of the starting flow. The meanings are as follows: |
|---|
| 107 | ///- \c ZERO_FLOW: constant zero flow |
|---|
| 108 | ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to |
|---|
| 109 | ///the sum of the out-flows in every node except the \e source and |
|---|
| 110 | ///the \e target. |
|---|
| 111 | ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at |
|---|
| 112 | ///least the sum of the out-flows in every node except the \e source. |
|---|
| 113 | ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be |
|---|
| 114 | ///set to the constant zero flow in the beginning of the algorithm in this case. |
|---|
| 115 | enum FlowEnum{ |
|---|
| 116 | ZERO_FLOW, |
|---|
| 117 | GEN_FLOW, |
|---|
| 118 | PRE_FLOW, |
|---|
| 119 | NO_FLOW |
|---|
| 120 | }; |
|---|
| 121 | |
|---|
| 122 | enum StatusEnum { |
|---|
| 123 | AFTER_NOTHING, |
|---|
| 124 | AFTER_AUGMENTING, |
|---|
| 125 | AFTER_FAST_AUGMENTING, |
|---|
| 126 | AFTER_PRE_FLOW_PHASE_1, |
|---|
| 127 | AFTER_PRE_FLOW_PHASE_2 |
|---|
| 128 | }; |
|---|
| 129 | |
|---|
| 130 | /// Don not needle this flag only if necessary. |
|---|
| 131 | StatusEnum status; |
|---|
| 132 | int number_of_augmentations; |
|---|
| 133 | |
|---|
| 134 | |
|---|
| 135 | template<typename IntMap> |
|---|
| 136 | class TrickyReachedMap { |
|---|
| 137 | protected: |
|---|
| 138 | IntMap* map; |
|---|
| 139 | int* number_of_augmentations; |
|---|
| 140 | public: |
|---|
| 141 | TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : |
|---|
| 142 | map(&_map), number_of_augmentations(&_number_of_augmentations) { } |
|---|
| 143 | void set(const Node& n, bool b) { |
|---|
| 144 | if (b) |
|---|
| 145 | map->set(n, *number_of_augmentations); |
|---|
| 146 | else |
|---|
| 147 | map->set(n, *number_of_augmentations-1); |
|---|
| 148 | } |
|---|
| 149 | bool operator[](const Node& n) const { |
|---|
| 150 | return (*map)[n]==*number_of_augmentations; |
|---|
| 151 | } |
|---|
| 152 | }; |
|---|
| 153 | |
|---|
| 154 | ///Constructor |
|---|
| 155 | |
|---|
| 156 | ///\todo Document, please. |
|---|
| 157 | /// |
|---|
| 158 | MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, |
|---|
| 159 | FlowMap& _flow) : |
|---|
| 160 | g(&_G), s(_s), t(_t), capacity(&_capacity), |
|---|
| 161 | flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), |
|---|
| 162 | status(AFTER_NOTHING), number_of_augmentations(0) { } |
|---|
| 163 | |
|---|
| 164 | ///Runs a maximum flow algorithm. |
|---|
| 165 | |
|---|
| 166 | ///Runs a preflow algorithm, which is the fastest maximum flow |
|---|
| 167 | ///algorithm up-to-date. The default for \c fe is ZERO_FLOW. |
|---|
| 168 | ///\pre The starting flow must be |
|---|
| 169 | /// - a constant zero flow if \c fe is \c ZERO_FLOW, |
|---|
| 170 | /// - an arbitary flow if \c fe is \c GEN_FLOW, |
|---|
| 171 | /// - an arbitary preflow if \c fe is \c PRE_FLOW, |
|---|
| 172 | /// - any map if \c fe is NO_FLOW. |
|---|
| 173 | void run(FlowEnum fe=ZERO_FLOW) { |
|---|
| 174 | preflow(fe); |
|---|
| 175 | } |
|---|
| 176 | |
|---|
| 177 | |
|---|
| 178 | ///Runs a preflow algorithm. |
|---|
| 179 | |
|---|
| 180 | ///Runs a preflow algorithm. The preflow algorithms provide the |
|---|
| 181 | ///fastest way to compute a maximum flow in a directed graph. |
|---|
| 182 | ///\pre The starting flow must be |
|---|
| 183 | /// - a constant zero flow if \c fe is \c ZERO_FLOW, |
|---|
| 184 | /// - an arbitary flow if \c fe is \c GEN_FLOW, |
|---|
| 185 | /// - an arbitary preflow if \c fe is \c PRE_FLOW, |
|---|
| 186 | /// - any map if \c fe is NO_FLOW. |
|---|
| 187 | /// |
|---|
| 188 | ///\todo NO_FLOW should be the default flow. |
|---|
| 189 | void preflow(FlowEnum fe) { |
|---|
| 190 | preflowPhase1(fe); |
|---|
| 191 | preflowPhase2(); |
|---|
| 192 | } |
|---|
| 193 | // Heuristics: |
|---|
| 194 | // 2 phase |
|---|
| 195 | // gap |
|---|
| 196 | // list 'level_list' on the nodes on level i implemented by hand |
|---|
| 197 | // stack 'active' on the active nodes on level i |
|---|
| 198 | // runs heuristic 'highest label' for H1*n relabels |
|---|
| 199 | // runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' |
|---|
| 200 | // Parameters H0 and H1 are initialized to 20 and 1. |
|---|
| 201 | |
|---|
| 202 | ///Runs the first phase of the preflow algorithm. |
|---|
| 203 | |
|---|
| 204 | ///The preflow algorithm consists of two phases, this method runs the |
|---|
| 205 | ///first phase. After the first phase the maximum flow value and a |
|---|
| 206 | ///minimum value cut can already be computed, though a maximum flow |
|---|
| 207 | ///is net yet obtained. So after calling this method \ref flowValue |
|---|
| 208 | ///and \ref actMinCut gives proper results. |
|---|
| 209 | ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not |
|---|
| 210 | ///give minimum value cuts unless calling \ref preflowPhase2. |
|---|
| 211 | ///\pre The starting flow must be |
|---|
| 212 | /// - a constant zero flow if \c fe is \c ZERO_FLOW, |
|---|
| 213 | /// - an arbitary flow if \c fe is \c GEN_FLOW, |
|---|
| 214 | /// - an arbitary preflow if \c fe is \c PRE_FLOW, |
|---|
| 215 | /// - any map if \c fe is NO_FLOW. |
|---|
| 216 | void preflowPhase1(FlowEnum fe); |
|---|
| 217 | |
|---|
| 218 | ///Runs the second phase of the preflow algorithm. |
|---|
| 219 | |
|---|
| 220 | ///The preflow algorithm consists of two phases, this method runs |
|---|
| 221 | ///the second phase. After calling \ref preflowPhase1 and then |
|---|
| 222 | ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut, |
|---|
| 223 | ///\ref minMinCut and \ref maxMinCut give proper results. |
|---|
| 224 | ///\pre \ref preflowPhase1 must be called before. |
|---|
| 225 | void preflowPhase2(); |
|---|
| 226 | |
|---|
| 227 | /// Starting from a flow, this method searches for an augmenting path |
|---|
| 228 | /// according to the Edmonds-Karp algorithm |
|---|
| 229 | /// and augments the flow on if any. |
|---|
| 230 | /// The return value shows if the augmentation was succesful. |
|---|
| 231 | bool augmentOnShortestPath(); |
|---|
| 232 | bool augmentOnShortestPath2(); |
|---|
| 233 | |
|---|
| 234 | /// Starting from a flow, this method searches for an augmenting blocking |
|---|
| 235 | /// flow according to Dinits' algorithm and augments the flow on if any. |
|---|
| 236 | /// The blocking flow is computed in a physically constructed |
|---|
| 237 | /// residual graph of type \c Mutablegraph. |
|---|
| 238 | /// The return value show sif the augmentation was succesful. |
|---|
| 239 | template<typename MutableGraph> bool augmentOnBlockingFlow(); |
|---|
| 240 | |
|---|
| 241 | /// The same as \c augmentOnBlockingFlow<MutableGraph> but the |
|---|
| 242 | /// residual graph is not constructed physically. |
|---|
| 243 | /// The return value shows if the augmentation was succesful. |
|---|
| 244 | bool augmentOnBlockingFlow2(); |
|---|
| 245 | |
|---|
| 246 | /// Returns the maximum value of a flow. |
|---|
| 247 | |
|---|
| 248 | /// Returns the maximum value of a flow, by counting the |
|---|
| 249 | /// over-flow of the target node \ref t. |
|---|
| 250 | /// It can be called already after running \ref preflowPhase1. |
|---|
| 251 | Num flowValue() const { |
|---|
| 252 | Num a=0; |
|---|
| 253 | FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e]; |
|---|
| 254 | FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e]; |
|---|
| 255 | return a; |
|---|
| 256 | //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan |
|---|
| 257 | } |
|---|
| 258 | |
|---|
| 259 | ///Returns a minimum value cut after calling \ref preflowPhase1. |
|---|
| 260 | |
|---|
| 261 | ///After the first phase of the preflow algorithm the maximum flow |
|---|
| 262 | ///value and a minimum value cut can already be computed. This |
|---|
| 263 | ///method can be called after running \ref preflowPhase1 for |
|---|
| 264 | ///obtaining a minimum value cut. |
|---|
| 265 | /// \warning Gives proper result only right after calling \ref |
|---|
| 266 | /// preflowPhase1. |
|---|
| 267 | /// \todo We have to make some status variable which shows the |
|---|
| 268 | /// actual state |
|---|
| 269 | /// of the class. This enables us to determine which methods are valid |
|---|
| 270 | /// for MinCut computation |
|---|
| 271 | template<typename _CutMap> |
|---|
| 272 | void actMinCut(_CutMap& M) const { |
|---|
| 273 | NodeIt v; |
|---|
| 274 | switch (status) { |
|---|
| 275 | case AFTER_PRE_FLOW_PHASE_1: |
|---|
| 276 | for(g->first(v); g->valid(v); g->next(v)) { |
|---|
| 277 | if (level[v] < n) { |
|---|
| 278 | M.set(v, false); |
|---|
| 279 | } else { |
|---|
| 280 | M.set(v, true); |
|---|
| 281 | } |
|---|
| 282 | } |
|---|
| 283 | break; |
|---|
| 284 | case AFTER_PRE_FLOW_PHASE_2: |
|---|
| 285 | case AFTER_NOTHING: |
|---|
| 286 | minMinCut(M); |
|---|
| 287 | break; |
|---|
| 288 | case AFTER_AUGMENTING: |
|---|
| 289 | for(g->first(v); g->valid(v); g->next(v)) { |
|---|
| 290 | if (level[v]) { |
|---|
| 291 | M.set(v, true); |
|---|
| 292 | } else { |
|---|
| 293 | M.set(v, false); |
|---|
| 294 | } |
|---|
| 295 | } |
|---|
| 296 | break; |
|---|
| 297 | case AFTER_FAST_AUGMENTING: |
|---|
| 298 | for(g->first(v); g->valid(v); g->next(v)) { |
|---|
| 299 | if (level[v]==number_of_augmentations) { |
|---|
| 300 | M.set(v, true); |
|---|
| 301 | } else { |
|---|
| 302 | M.set(v, false); |
|---|
| 303 | } |
|---|
| 304 | } |
|---|
| 305 | break; |
|---|
| 306 | } |
|---|
| 307 | } |
|---|
| 308 | |
|---|
| 309 | ///Returns the inclusionwise minimum of the minimum value cuts. |
|---|
| 310 | |
|---|
| 311 | ///Sets \c M to the characteristic vector of the minimum value cut |
|---|
| 312 | ///which is inclusionwise minimum. It is computed by processing |
|---|
| 313 | ///a bfs from the source node \c s in the residual graph. |
|---|
| 314 | ///\pre M should be a node map of bools initialized to false. |
|---|
| 315 | ///\pre \c flow must be a maximum flow. |
|---|
| 316 | template<typename _CutMap> |
|---|
| 317 | void minMinCut(_CutMap& M) const { |
|---|
| 318 | std::queue<Node> queue; |
|---|
| 319 | |
|---|
| 320 | M.set(s,true); |
|---|
| 321 | queue.push(s); |
|---|
| 322 | |
|---|
| 323 | while (!queue.empty()) { |
|---|
| 324 | Node w=queue.front(); |
|---|
| 325 | queue.pop(); |
|---|
| 326 | |
|---|
| 327 | OutEdgeIt e; |
|---|
| 328 | for(g->first(e,w) ; g->valid(e); g->next(e)) { |
|---|
| 329 | Node v=g->target(e); |
|---|
| 330 | if (!M[v] && (*flow)[e] < (*capacity)[e] ) { |
|---|
| 331 | queue.push(v); |
|---|
| 332 | M.set(v, true); |
|---|
| 333 | } |
|---|
| 334 | } |
|---|
| 335 | |
|---|
| 336 | InEdgeIt f; |
|---|
| 337 | for(g->first(f,w) ; g->valid(f); g->next(f)) { |
|---|
| 338 | Node v=g->source(f); |
|---|
| 339 | if (!M[v] && (*flow)[f] > 0 ) { |
|---|
| 340 | queue.push(v); |
|---|
| 341 | M.set(v, true); |
|---|
| 342 | } |
|---|
| 343 | } |
|---|
| 344 | } |
|---|
| 345 | } |
|---|
| 346 | |
|---|
| 347 | ///Returns the inclusionwise maximum of the minimum value cuts. |
|---|
| 348 | |
|---|
| 349 | ///Sets \c M to the characteristic vector of the minimum value cut |
|---|
| 350 | ///which is inclusionwise maximum. It is computed by processing a |
|---|
| 351 | ///backward bfs from the target node \c t in the residual graph. |
|---|
| 352 | ///\pre M should be a node map of bools initialized to false. |
|---|
| 353 | ///\pre \c flow must be a maximum flow. |
|---|
| 354 | template<typename _CutMap> |
|---|
| 355 | void maxMinCut(_CutMap& M) const { |
|---|
| 356 | |
|---|
| 357 | NodeIt v; |
|---|
| 358 | for(g->first(v) ; g->valid(v); g->next(v)) { |
|---|
| 359 | M.set(v, true); |
|---|
| 360 | } |
|---|
| 361 | |
|---|
| 362 | std::queue<Node> queue; |
|---|
| 363 | |
|---|
| 364 | M.set(t,false); |
|---|
| 365 | queue.push(t); |
|---|
| 366 | |
|---|
| 367 | while (!queue.empty()) { |
|---|
| 368 | Node w=queue.front(); |
|---|
| 369 | queue.pop(); |
|---|
| 370 | |
|---|
| 371 | InEdgeIt e; |
|---|
| 372 | for(g->first(e,w) ; g->valid(e); g->next(e)) { |
|---|
| 373 | Node v=g->source(e); |
|---|
| 374 | if (M[v] && (*flow)[e] < (*capacity)[e] ) { |
|---|
| 375 | queue.push(v); |
|---|
| 376 | M.set(v, false); |
|---|
| 377 | } |
|---|
| 378 | } |
|---|
| 379 | |
|---|
| 380 | OutEdgeIt f; |
|---|
| 381 | for(g->first(f,w) ; g->valid(f); g->next(f)) { |
|---|
| 382 | Node v=g->target(f); |
|---|
| 383 | if (M[v] && (*flow)[f] > 0 ) { |
|---|
| 384 | queue.push(v); |
|---|
| 385 | M.set(v, false); |
|---|
| 386 | } |
|---|
| 387 | } |
|---|
| 388 | } |
|---|
| 389 | } |
|---|
| 390 | |
|---|
| 391 | ///Returns a minimum value cut. |
|---|
| 392 | |
|---|
| 393 | ///Sets \c M to the characteristic vector of a minimum value cut. |
|---|
| 394 | ///\pre M should be a node map of bools initialized to false. |
|---|
| 395 | ///\pre \c flow must be a maximum flow. |
|---|
| 396 | template<typename CutMap> |
|---|
| 397 | void minCut(CutMap& M) const { minMinCut(M); } |
|---|
| 398 | |
|---|
| 399 | ///Resets the source node to \c _s. |
|---|
| 400 | |
|---|
| 401 | ///Resets the source node to \c _s. |
|---|
| 402 | /// |
|---|
| 403 | void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; } |
|---|
| 404 | |
|---|
| 405 | ///Resets the target node to \c _t. |
|---|
| 406 | |
|---|
| 407 | ///Resets the target node to \c _t. |
|---|
| 408 | /// |
|---|
| 409 | void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; } |
|---|
| 410 | |
|---|
| 411 | /// Resets the edge map of the capacities to _cap. |
|---|
| 412 | |
|---|
| 413 | /// Resets the edge map of the capacities to _cap. |
|---|
| 414 | /// |
|---|
| 415 | void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; } |
|---|
| 416 | |
|---|
| 417 | /// Resets the edge map of the flows to _flow. |
|---|
| 418 | |
|---|
| 419 | /// Resets the edge map of the flows to _flow. |
|---|
| 420 | /// |
|---|
| 421 | void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; } |
|---|
| 422 | |
|---|
| 423 | |
|---|
| 424 | private: |
|---|
| 425 | |
|---|
| 426 | int push(Node w, VecStack& active) { |
|---|
| 427 | |
|---|
| 428 | int lev=level[w]; |
|---|
| 429 | Num exc=excess[w]; |
|---|
| 430 | int newlevel=n; //bound on the next level of w |
|---|
| 431 | |
|---|
| 432 | OutEdgeIt e; |
|---|
| 433 | for(g->first(e,w); g->valid(e); g->next(e)) { |
|---|
| 434 | |
|---|
| 435 | if ( (*flow)[e] >= (*capacity)[e] ) continue; |
|---|
| 436 | Node v=g->target(e); |
|---|
| 437 | |
|---|
| 438 | if( lev > level[v] ) { //Push is allowed now |
|---|
| 439 | |
|---|
| 440 | if ( excess[v]<=0 && v!=t && v!=s ) { |
|---|
| 441 | int lev_v=level[v]; |
|---|
| 442 | active[lev_v].push(v); |
|---|
| 443 | } |
|---|
| 444 | |
|---|
| 445 | Num cap=(*capacity)[e]; |
|---|
| 446 | Num flo=(*flow)[e]; |
|---|
| 447 | Num remcap=cap-flo; |
|---|
| 448 | |
|---|
| 449 | if ( remcap >= exc ) { //A nonsaturating push. |
|---|
| 450 | |
|---|
| 451 | flow->set(e, flo+exc); |
|---|
| 452 | excess.set(v, excess[v]+exc); |
|---|
| 453 | exc=0; |
|---|
| 454 | break; |
|---|
| 455 | |
|---|
| 456 | } else { //A saturating push. |
|---|
| 457 | flow->set(e, cap); |
|---|
| 458 | excess.set(v, excess[v]+remcap); |
|---|
| 459 | exc-=remcap; |
|---|
| 460 | } |
|---|
| 461 | } else if ( newlevel > level[v] ) newlevel = level[v]; |
|---|
| 462 | } //for out edges wv |
|---|
| 463 | |
|---|
| 464 | if ( exc > 0 ) { |
|---|
| 465 | InEdgeIt e; |
|---|
| 466 | for(g->first(e,w); g->valid(e); g->next(e)) { |
|---|
| 467 | |
|---|
| 468 | if( (*flow)[e] <= 0 ) continue; |
|---|
| 469 | Node v=g->source(e); |
|---|
| 470 | |
|---|
| 471 | if( lev > level[v] ) { //Push is allowed now |
|---|
| 472 | |
|---|
| 473 | if ( excess[v]<=0 && v!=t && v!=s ) { |
|---|
| 474 | int lev_v=level[v]; |
|---|
| 475 | active[lev_v].push(v); |
|---|
| 476 | } |
|---|
| 477 | |
|---|
| 478 | Num flo=(*flow)[e]; |
|---|
| 479 | |
|---|
| 480 | if ( flo >= exc ) { //A nonsaturating push. |
|---|
| 481 | |
|---|
| 482 | flow->set(e, flo-exc); |
|---|
| 483 | excess.set(v, excess[v]+exc); |
|---|
| 484 | exc=0; |
|---|
| 485 | break; |
|---|
| 486 | } else { //A saturating push. |
|---|
| 487 | |
|---|
| 488 | excess.set(v, excess[v]+flo); |
|---|
| 489 | exc-=flo; |
|---|
| 490 | flow->set(e,0); |
|---|
| 491 | } |
|---|
| 492 | } else if ( newlevel > level[v] ) newlevel = level[v]; |
|---|
| 493 | } //for in edges vw |
|---|
| 494 | |
|---|
| 495 | } // if w still has excess after the out edge for cycle |
|---|
| 496 | |
|---|
| 497 | excess.set(w, exc); |
|---|
| 498 | |
|---|
| 499 | return newlevel; |
|---|
| 500 | } |
|---|
| 501 | |
|---|
| 502 | |
|---|
| 503 | void preflowPreproc(FlowEnum fe, VecStack& active, |
|---|
| 504 | VecNode& level_list, NNMap& left, NNMap& right) |
|---|
| 505 | { |
|---|
| 506 | std::queue<Node> bfs_queue; |
|---|
| 507 | |
|---|
| 508 | switch (fe) { |
|---|
| 509 | case NO_FLOW: //flow is already set to const zero in this case |
|---|
| 510 | case ZERO_FLOW: |
|---|
| 511 | { |
|---|
| 512 | //Reverse_bfs from t, to find the starting level. |
|---|
| 513 | level.set(t,0); |
|---|
| 514 | bfs_queue.push(t); |
|---|
| 515 | |
|---|
| 516 | while (!bfs_queue.empty()) { |
|---|
| 517 | |
|---|
| 518 | Node v=bfs_queue.front(); |
|---|
| 519 | bfs_queue.pop(); |
|---|
| 520 | int l=level[v]+1; |
|---|
| 521 | |
|---|
| 522 | InEdgeIt e; |
|---|
| 523 | for(g->first(e,v); g->valid(e); g->next(e)) { |
|---|
| 524 | Node w=g->source(e); |
|---|
| 525 | if ( level[w] == n && w != s ) { |
|---|
| 526 | bfs_queue.push(w); |
|---|
| 527 | Node first=level_list[l]; |
|---|
| 528 | if ( g->valid(first) ) left.set(first,w); |
|---|
| 529 | right.set(w,first); |
|---|
| 530 | level_list[l]=w; |
|---|
| 531 | level.set(w, l); |
|---|
| 532 | } |
|---|
| 533 | } |
|---|
| 534 | } |
|---|
| 535 | |
|---|
| 536 | //the starting flow |
|---|
| 537 | OutEdgeIt e; |
|---|
| 538 | for(g->first(e,s); g->valid(e); g->next(e)) |
|---|
| 539 | { |
|---|
| 540 | Num c=(*capacity)[e]; |
|---|
| 541 | if ( c <= 0 ) continue; |
|---|
| 542 | Node w=g->target(e); |
|---|
| 543 | if ( level[w] < n ) { |
|---|
| 544 | if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); |
|---|
| 545 | flow->set(e, c); |
|---|
| 546 | excess.set(w, excess[w]+c); |
|---|
| 547 | } |
|---|
| 548 | } |
|---|
| 549 | break; |
|---|
| 550 | } |
|---|
| 551 | |
|---|
| 552 | case GEN_FLOW: |
|---|
| 553 | case PRE_FLOW: |
|---|
| 554 | { |
|---|
| 555 | //Reverse_bfs from t in the residual graph, |
|---|
| 556 | //to find the starting level. |
|---|
| 557 | level.set(t,0); |
|---|
| 558 | bfs_queue.push(t); |
|---|
| 559 | |
|---|
| 560 | while (!bfs_queue.empty()) { |
|---|
| 561 | |
|---|
| 562 | Node v=bfs_queue.front(); |
|---|
| 563 | bfs_queue.pop(); |
|---|
| 564 | int l=level[v]+1; |
|---|
| 565 | |
|---|
| 566 | InEdgeIt e; |
|---|
| 567 | for(g->first(e,v); g->valid(e); g->next(e)) { |
|---|
| 568 | if ( (*capacity)[e] <= (*flow)[e] ) continue; |
|---|
| 569 | Node w=g->source(e); |
|---|
| 570 | if ( level[w] == n && w != s ) { |
|---|
| 571 | bfs_queue.push(w); |
|---|
| 572 | Node first=level_list[l]; |
|---|
| 573 | if ( g->valid(first) ) left.set(first,w); |
|---|
| 574 | right.set(w,first); |
|---|
| 575 | level_list[l]=w; |
|---|
| 576 | level.set(w, l); |
|---|
| 577 | } |
|---|
| 578 | } |
|---|
| 579 | |
|---|
| 580 | OutEdgeIt f; |
|---|
| 581 | for(g->first(f,v); g->valid(f); g->next(f)) { |
|---|
| 582 | if ( 0 >= (*flow)[f] ) continue; |
|---|
| 583 | Node w=g->target(f); |
|---|
| 584 | if ( level[w] == n && w != s ) { |
|---|
| 585 | bfs_queue.push(w); |
|---|
| 586 | Node first=level_list[l]; |
|---|
| 587 | if ( g->valid(first) ) left.set(first,w); |
|---|
| 588 | right.set(w,first); |
|---|
| 589 | level_list[l]=w; |
|---|
| 590 | level.set(w, l); |
|---|
| 591 | } |
|---|
| 592 | } |
|---|
| 593 | } |
|---|
| 594 | |
|---|
| 595 | |
|---|
| 596 | //the starting flow |
|---|
| 597 | OutEdgeIt e; |
|---|
| 598 | for(g->first(e,s); g->valid(e); g->next(e)) |
|---|
| 599 | { |
|---|
| 600 | Num rem=(*capacity)[e]-(*flow)[e]; |
|---|
| 601 | if ( rem <= 0 ) continue; |
|---|
| 602 | Node w=g->target(e); |
|---|
| 603 | if ( level[w] < n ) { |
|---|
| 604 | if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); |
|---|
| 605 | flow->set(e, (*capacity)[e]); |
|---|
| 606 | excess.set(w, excess[w]+rem); |
|---|
| 607 | } |
|---|
| 608 | } |
|---|
| 609 | |
|---|
| 610 | InEdgeIt f; |
|---|
| 611 | for(g->first(f,s); g->valid(f); g->next(f)) |
|---|
| 612 | { |
|---|
| 613 | if ( (*flow)[f] <= 0 ) continue; |
|---|
| 614 | Node w=g->source(f); |
|---|
| 615 | if ( level[w] < n ) { |
|---|
| 616 | if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); |
|---|
| 617 | excess.set(w, excess[w]+(*flow)[f]); |
|---|
| 618 | flow->set(f, 0); |
|---|
| 619 | } |
|---|
| 620 | } |
|---|
| 621 | break; |
|---|
| 622 | } //case PRE_FLOW |
|---|
| 623 | } |
|---|
| 624 | } //preflowPreproc |
|---|
| 625 | |
|---|
| 626 | |
|---|
| 627 | |
|---|
| 628 | void relabel(Node w, int newlevel, VecStack& active, |
|---|
| 629 | VecNode& level_list, NNMap& left, |
|---|
| 630 | NNMap& right, int& b, int& k, bool what_heur ) |
|---|
| 631 | { |
|---|
| 632 | |
|---|
| 633 | Num lev=level[w]; |
|---|
| 634 | |
|---|
| 635 | Node right_n=right[w]; |
|---|
| 636 | Node left_n=left[w]; |
|---|
| 637 | |
|---|
| 638 | //unlacing starts |
|---|
| 639 | if ( g->valid(right_n) ) { |
|---|
| 640 | if ( g->valid(left_n) ) { |
|---|
| 641 | right.set(left_n, right_n); |
|---|
| 642 | left.set(right_n, left_n); |
|---|
| 643 | } else { |
|---|
| 644 | level_list[lev]=right_n; |
|---|
| 645 | left.set(right_n, INVALID); |
|---|
| 646 | } |
|---|
| 647 | } else { |
|---|
| 648 | if ( g->valid(left_n) ) { |
|---|
| 649 | right.set(left_n, INVALID); |
|---|
| 650 | } else { |
|---|
| 651 | level_list[lev]=INVALID; |
|---|
| 652 | } |
|---|
| 653 | } |
|---|
| 654 | //unlacing ends |
|---|
| 655 | |
|---|
| 656 | if ( !g->valid(level_list[lev]) ) { |
|---|
| 657 | |
|---|
| 658 | //gapping starts |
|---|
| 659 | for (int i=lev; i!=k ; ) { |
|---|
| 660 | Node v=level_list[++i]; |
|---|
| 661 | while ( g->valid(v) ) { |
|---|
| 662 | level.set(v,n); |
|---|
| 663 | v=right[v]; |
|---|
| 664 | } |
|---|
| 665 | level_list[i]=INVALID; |
|---|
| 666 | if ( !what_heur ) { |
|---|
| 667 | while ( !active[i].empty() ) { |
|---|
| 668 | active[i].pop(); //FIXME: ezt szebben kene |
|---|
| 669 | } |
|---|
| 670 | } |
|---|
| 671 | } |
|---|
| 672 | |
|---|
| 673 | level.set(w,n); |
|---|
| 674 | b=lev-1; |
|---|
| 675 | k=b; |
|---|
| 676 | //gapping ends |
|---|
| 677 | |
|---|
| 678 | } else { |
|---|
| 679 | |
|---|
| 680 | if ( newlevel == n ) level.set(w,n); |
|---|
| 681 | else { |
|---|
| 682 | level.set(w,++newlevel); |
|---|
| 683 | active[newlevel].push(w); |
|---|
| 684 | if ( what_heur ) b=newlevel; |
|---|
| 685 | if ( k < newlevel ) ++k; //now k=newlevel |
|---|
| 686 | Node first=level_list[newlevel]; |
|---|
| 687 | if ( g->valid(first) ) left.set(first,w); |
|---|
| 688 | right.set(w,first); |
|---|
| 689 | left.set(w,INVALID); |
|---|
| 690 | level_list[newlevel]=w; |
|---|
| 691 | } |
|---|
| 692 | } |
|---|
| 693 | |
|---|
| 694 | } //relabel |
|---|
| 695 | |
|---|
| 696 | |
|---|
| 697 | template<typename MapGraphWrapper> |
|---|
| 698 | class DistanceMap { |
|---|
| 699 | protected: |
|---|
| 700 | const MapGraphWrapper* g; |
|---|
| 701 | typename MapGraphWrapper::template NodeMap<int> dist; |
|---|
| 702 | public: |
|---|
| 703 | DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { } |
|---|
| 704 | void set(const typename MapGraphWrapper::Node& n, int a) { |
|---|
| 705 | dist.set(n, a); |
|---|
| 706 | } |
|---|
| 707 | int operator[](const typename MapGraphWrapper::Node& n) const { |
|---|
| 708 | return dist[n]; |
|---|
| 709 | } |
|---|
| 710 | // int get(const typename MapGraphWrapper::Node& n) const { |
|---|
| 711 | // return dist[n]; } |
|---|
| 712 | // bool get(const typename MapGraphWrapper::Edge& e) const { |
|---|
| 713 | // return (dist.get(g->source(e))<dist.get(g->target(e))); } |
|---|
| 714 | bool operator[](const typename MapGraphWrapper::Edge& e) const { |
|---|
| 715 | return (dist[g->source(e)]<dist[g->target(e)]); |
|---|
| 716 | } |
|---|
| 717 | }; |
|---|
| 718 | |
|---|
| 719 | }; |
|---|
| 720 | |
|---|
| 721 | |
|---|
| 722 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
|---|
| 723 | void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe) |
|---|
| 724 | { |
|---|
| 725 | |
|---|
| 726 | int heur0=(int)(H0*n); //time while running 'bound decrease' |
|---|
| 727 | int heur1=(int)(H1*n); //time while running 'highest label' |
|---|
| 728 | int heur=heur1; //starting time interval (#of relabels) |
|---|
| 729 | int numrelabel=0; |
|---|
| 730 | |
|---|
| 731 | bool what_heur=1; |
|---|
| 732 | //It is 0 in case 'bound decrease' and 1 in case 'highest label' |
|---|
| 733 | |
|---|
| 734 | bool end=false; |
|---|
| 735 | //Needed for 'bound decrease', true means no active nodes are above bound |
|---|
| 736 | //b. |
|---|
| 737 | |
|---|
| 738 | int k=n-2; //bound on the highest level under n containing a node |
|---|
| 739 | int b=k; //bound on the highest level under n of an active node |
|---|
| 740 | |
|---|
| 741 | VecStack active(n); |
|---|
| 742 | |
|---|
| 743 | NNMap left(*g, INVALID); |
|---|
| 744 | NNMap right(*g, INVALID); |
|---|
| 745 | VecNode level_list(n,INVALID); |
|---|
| 746 | //List of the nodes in level i<n, set to n. |
|---|
| 747 | |
|---|
| 748 | NodeIt v; |
|---|
| 749 | for(g->first(v); g->valid(v); g->next(v)) level.set(v,n); |
|---|
| 750 | //setting each node to level n |
|---|
| 751 | |
|---|
| 752 | if ( fe == NO_FLOW ) { |
|---|
| 753 | EdgeIt e; |
|---|
| 754 | for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0); |
|---|
| 755 | } |
|---|
| 756 | |
|---|
| 757 | switch (fe) { //computing the excess |
|---|
| 758 | case PRE_FLOW: |
|---|
| 759 | { |
|---|
| 760 | NodeIt v; |
|---|
| 761 | for(g->first(v); g->valid(v); g->next(v)) { |
|---|
| 762 | Num exc=0; |
|---|
| 763 | |
|---|
| 764 | InEdgeIt e; |
|---|
| 765 | for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e]; |
|---|
| 766 | OutEdgeIt f; |
|---|
| 767 | for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f]; |
|---|
| 768 | |
|---|
| 769 | excess.set(v,exc); |
|---|
| 770 | |
|---|
| 771 | //putting the active nodes into the stack |
|---|
| 772 | int lev=level[v]; |
|---|
| 773 | if ( exc > 0 && lev < n && v != t ) active[lev].push(v); |
|---|
| 774 | } |
|---|
| 775 | break; |
|---|
| 776 | } |
|---|
| 777 | case GEN_FLOW: |
|---|
| 778 | { |
|---|
| 779 | NodeIt v; |
|---|
| 780 | for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0); |
|---|
| 781 | |
|---|
| 782 | Num exc=0; |
|---|
| 783 | InEdgeIt e; |
|---|
| 784 | for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e]; |
|---|
| 785 | OutEdgeIt f; |
|---|
| 786 | for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f]; |
|---|
| 787 | excess.set(t,exc); |
|---|
| 788 | break; |
|---|
| 789 | } |
|---|
| 790 | case ZERO_FLOW: |
|---|
| 791 | case NO_FLOW: |
|---|
| 792 | { |
|---|
| 793 | NodeIt v; |
|---|
| 794 | for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0); |
|---|
| 795 | break; |
|---|
| 796 | } |
|---|
| 797 | } |
|---|
| 798 | |
|---|
| 799 | preflowPreproc(fe, active, level_list, left, right); |
|---|
| 800 | //End of preprocessing |
|---|
| 801 | |
|---|
| 802 | |
|---|
| 803 | //Push/relabel on the highest level active nodes. |
|---|
| 804 | while ( true ) { |
|---|
| 805 | if ( b == 0 ) { |
|---|
| 806 | if ( !what_heur && !end && k > 0 ) { |
|---|
| 807 | b=k; |
|---|
| 808 | end=true; |
|---|
| 809 | } else break; |
|---|
| 810 | } |
|---|
| 811 | |
|---|
| 812 | if ( active[b].empty() ) --b; |
|---|
| 813 | else { |
|---|
| 814 | end=false; |
|---|
| 815 | Node w=active[b].top(); |
|---|
| 816 | active[b].pop(); |
|---|
| 817 | int newlevel=push(w,active); |
|---|
| 818 | if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, |
|---|
| 819 | left, right, b, k, what_heur); |
|---|
| 820 | |
|---|
| 821 | ++numrelabel; |
|---|
| 822 | if ( numrelabel >= heur ) { |
|---|
| 823 | numrelabel=0; |
|---|
| 824 | if ( what_heur ) { |
|---|
| 825 | what_heur=0; |
|---|
| 826 | heur=heur0; |
|---|
| 827 | end=false; |
|---|
| 828 | } else { |
|---|
| 829 | what_heur=1; |
|---|
| 830 | heur=heur1; |
|---|
| 831 | b=k; |
|---|
| 832 | } |
|---|
| 833 | } |
|---|
| 834 | } |
|---|
| 835 | } |
|---|
| 836 | |
|---|
| 837 | status=AFTER_PRE_FLOW_PHASE_1; |
|---|
| 838 | } |
|---|
| 839 | |
|---|
| 840 | |
|---|
| 841 | |
|---|
| 842 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
|---|
| 843 | void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2() |
|---|
| 844 | { |
|---|
| 845 | |
|---|
| 846 | int k=n-2; //bound on the highest level under n containing a node |
|---|
| 847 | int b=k; //bound on the highest level under n of an active node |
|---|
| 848 | |
|---|
| 849 | VecStack active(n); |
|---|
| 850 | level.set(s,0); |
|---|
| 851 | std::queue<Node> bfs_queue; |
|---|
| 852 | bfs_queue.push(s); |
|---|
| 853 | |
|---|
| 854 | while (!bfs_queue.empty()) { |
|---|
| 855 | |
|---|
| 856 | Node v=bfs_queue.front(); |
|---|
| 857 | bfs_queue.pop(); |
|---|
| 858 | int l=level[v]+1; |
|---|
| 859 | |
|---|
| 860 | InEdgeIt e; |
|---|
| 861 | for(g->first(e,v); g->valid(e); g->next(e)) { |
|---|
| 862 | if ( (*capacity)[e] <= (*flow)[e] ) continue; |
|---|
| 863 | Node u=g->source(e); |
|---|
| 864 | if ( level[u] >= n ) { |
|---|
| 865 | bfs_queue.push(u); |
|---|
| 866 | level.set(u, l); |
|---|
| 867 | if ( excess[u] > 0 ) active[l].push(u); |
|---|
| 868 | } |
|---|
| 869 | } |
|---|
| 870 | |
|---|
| 871 | OutEdgeIt f; |
|---|
| 872 | for(g->first(f,v); g->valid(f); g->next(f)) { |
|---|
| 873 | if ( 0 >= (*flow)[f] ) continue; |
|---|
| 874 | Node u=g->target(f); |
|---|
| 875 | if ( level[u] >= n ) { |
|---|
| 876 | bfs_queue.push(u); |
|---|
| 877 | level.set(u, l); |
|---|
| 878 | if ( excess[u] > 0 ) active[l].push(u); |
|---|
| 879 | } |
|---|
| 880 | } |
|---|
| 881 | } |
|---|
| 882 | b=n-2; |
|---|
| 883 | |
|---|
| 884 | while ( true ) { |
|---|
| 885 | |
|---|
| 886 | if ( b == 0 ) break; |
|---|
| 887 | |
|---|
| 888 | if ( active[b].empty() ) --b; |
|---|
| 889 | else { |
|---|
| 890 | Node w=active[b].top(); |
|---|
| 891 | active[b].pop(); |
|---|
| 892 | int newlevel=push(w,active); |
|---|
| 893 | |
|---|
| 894 | //relabel |
|---|
| 895 | if ( excess[w] > 0 ) { |
|---|
| 896 | level.set(w,++newlevel); |
|---|
| 897 | active[newlevel].push(w); |
|---|
| 898 | b=newlevel; |
|---|
| 899 | } |
|---|
| 900 | } // if stack[b] is nonempty |
|---|
| 901 | } // while(true) |
|---|
| 902 | |
|---|
| 903 | status=AFTER_PRE_FLOW_PHASE_2; |
|---|
| 904 | } |
|---|
| 905 | |
|---|
| 906 | |
|---|
| 907 | |
|---|
| 908 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
|---|
| 909 | bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath() |
|---|
| 910 | { |
|---|
| 911 | ResGW res_graph(*g, *capacity, *flow); |
|---|
| 912 | bool _augment=false; |
|---|
| 913 | |
|---|
| 914 | //ReachedMap level(res_graph); |
|---|
| 915 | FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); |
|---|
| 916 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
|---|
| 917 | bfs.pushAndSetReached(s); |
|---|
| 918 | |
|---|
| 919 | typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); |
|---|
| 920 | pred.set(s, INVALID); |
|---|
| 921 | |
|---|
| 922 | typename ResGW::template NodeMap<Num> free(res_graph); |
|---|
| 923 | |
|---|
| 924 | //searching for augmenting path |
|---|
| 925 | while ( !bfs.finished() ) { |
|---|
| 926 | ResGWOutEdgeIt e=bfs; |
|---|
| 927 | if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|---|
| 928 | Node v=res_graph.source(e); |
|---|
| 929 | Node w=res_graph.target(e); |
|---|
| 930 | pred.set(w, e); |
|---|
| 931 | if (res_graph.valid(pred[v])) { |
|---|
| 932 | free.set(w, std::min(free[v], res_graph.resCap(e))); |
|---|
| 933 | } else { |
|---|
| 934 | free.set(w, res_graph.resCap(e)); |
|---|
| 935 | } |
|---|
| 936 | if (res_graph.target(e)==t) { _augment=true; break; } |
|---|
| 937 | } |
|---|
| 938 | |
|---|
| 939 | ++bfs; |
|---|
| 940 | } //end of searching augmenting path |
|---|
| 941 | |
|---|
| 942 | if (_augment) { |
|---|
| 943 | Node n=t; |
|---|
| 944 | Num augment_value=free[t]; |
|---|
| 945 | while (res_graph.valid(pred[n])) { |
|---|
| 946 | ResGWEdge e=pred[n]; |
|---|
| 947 | res_graph.augment(e, augment_value); |
|---|
| 948 | n=res_graph.source(e); |
|---|
| 949 | } |
|---|
| 950 | } |
|---|
| 951 | |
|---|
| 952 | status=AFTER_AUGMENTING; |
|---|
| 953 | return _augment; |
|---|
| 954 | } |
|---|
| 955 | |
|---|
| 956 | |
|---|
| 957 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
|---|
| 958 | bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2() |
|---|
| 959 | { |
|---|
| 960 | ResGW res_graph(*g, *capacity, *flow); |
|---|
| 961 | bool _augment=false; |
|---|
| 962 | |
|---|
| 963 | if (status!=AFTER_FAST_AUGMENTING) { |
|---|
| 964 | FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); |
|---|
| 965 | number_of_augmentations=1; |
|---|
| 966 | } else { |
|---|
| 967 | ++number_of_augmentations; |
|---|
| 968 | } |
|---|
| 969 | TrickyReachedMap<ReachedMap> |
|---|
| 970 | tricky_reached_map(level, number_of_augmentations); |
|---|
| 971 | //ReachedMap level(res_graph); |
|---|
| 972 | // FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); |
|---|
| 973 | BfsIterator<ResGW, TrickyReachedMap<ReachedMap> > |
|---|
| 974 | bfs(res_graph, tricky_reached_map); |
|---|
| 975 | bfs.pushAndSetReached(s); |
|---|
| 976 | |
|---|
| 977 | typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); |
|---|
| 978 | pred.set(s, INVALID); |
|---|
| 979 | |
|---|
| 980 | typename ResGW::template NodeMap<Num> free(res_graph); |
|---|
| 981 | |
|---|
| 982 | //searching for augmenting path |
|---|
| 983 | while ( !bfs.finished() ) { |
|---|
| 984 | ResGWOutEdgeIt e=bfs; |
|---|
| 985 | if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|---|
| 986 | Node v=res_graph.source(e); |
|---|
| 987 | Node w=res_graph.target(e); |
|---|
| 988 | pred.set(w, e); |
|---|
| 989 | if (res_graph.valid(pred[v])) { |
|---|
| 990 | free.set(w, std::min(free[v], res_graph.resCap(e))); |
|---|
| 991 | } else { |
|---|
| 992 | free.set(w, res_graph.resCap(e)); |
|---|
| 993 | } |
|---|
| 994 | if (res_graph.target(e)==t) { _augment=true; break; } |
|---|
| 995 | } |
|---|
| 996 | |
|---|
| 997 | ++bfs; |
|---|
| 998 | } //end of searching augmenting path |
|---|
| 999 | |
|---|
| 1000 | if (_augment) { |
|---|
| 1001 | Node n=t; |
|---|
| 1002 | Num augment_value=free[t]; |
|---|
| 1003 | while (res_graph.valid(pred[n])) { |
|---|
| 1004 | ResGWEdge e=pred[n]; |
|---|
| 1005 | res_graph.augment(e, augment_value); |
|---|
| 1006 | n=res_graph.source(e); |
|---|
| 1007 | } |
|---|
| 1008 | } |
|---|
| 1009 | |
|---|
| 1010 | status=AFTER_FAST_AUGMENTING; |
|---|
| 1011 | return _augment; |
|---|
| 1012 | } |
|---|
| 1013 | |
|---|
| 1014 | |
|---|
| 1015 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
|---|
| 1016 | template<typename MutableGraph> |
|---|
| 1017 | bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow() |
|---|
| 1018 | { |
|---|
| 1019 | typedef MutableGraph MG; |
|---|
| 1020 | bool _augment=false; |
|---|
| 1021 | |
|---|
| 1022 | ResGW res_graph(*g, *capacity, *flow); |
|---|
| 1023 | |
|---|
| 1024 | //bfs for distances on the residual graph |
|---|
| 1025 | //ReachedMap level(res_graph); |
|---|
| 1026 | FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); |
|---|
| 1027 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
|---|
| 1028 | bfs.pushAndSetReached(s); |
|---|
| 1029 | typename ResGW::template NodeMap<int> |
|---|
| 1030 | dist(res_graph); //filled up with 0's |
|---|
| 1031 | |
|---|
| 1032 | //F will contain the physical copy of the residual graph |
|---|
| 1033 | //with the set of edges which are on shortest paths |
|---|
| 1034 | MG F; |
|---|
| 1035 | typename ResGW::template NodeMap<typename MG::Node> |
|---|
| 1036 | res_graph_to_F(res_graph); |
|---|
| 1037 | { |
|---|
| 1038 | typename ResGW::NodeIt n; |
|---|
| 1039 | for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) { |
|---|
| 1040 | res_graph_to_F.set(n, F.addNode()); |
|---|
| 1041 | } |
|---|
| 1042 | } |
|---|
| 1043 | |
|---|
| 1044 | typename MG::Node sF=res_graph_to_F[s]; |
|---|
| 1045 | typename MG::Node tF=res_graph_to_F[t]; |
|---|
| 1046 | typename MG::template EdgeMap<ResGWEdge> original_edge(F); |
|---|
| 1047 | typename MG::template EdgeMap<Num> residual_capacity(F); |
|---|
| 1048 | |
|---|
| 1049 | while ( !bfs.finished() ) { |
|---|
| 1050 | ResGWOutEdgeIt e=bfs; |
|---|
| 1051 | if (res_graph.valid(e)) { |
|---|
| 1052 | if (bfs.isBNodeNewlyReached()) { |
|---|
| 1053 | dist.set(res_graph.target(e), dist[res_graph.source(e)]+1); |
|---|
| 1054 | typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.source(e)], |
|---|
| 1055 | res_graph_to_F[res_graph.target(e)]); |
|---|
| 1056 | original_edge.update(); |
|---|
| 1057 | original_edge.set(f, e); |
|---|
| 1058 | residual_capacity.update(); |
|---|
| 1059 | residual_capacity.set(f, res_graph.resCap(e)); |
|---|
| 1060 | } else { |
|---|
| 1061 | if (dist[res_graph.target(e)]==(dist[res_graph.source(e)]+1)) { |
|---|
| 1062 | typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.source(e)], |
|---|
| 1063 | res_graph_to_F[res_graph.target(e)]); |
|---|
| 1064 | original_edge.update(); |
|---|
| 1065 | original_edge.set(f, e); |
|---|
| 1066 | residual_capacity.update(); |
|---|
| 1067 | residual_capacity.set(f, res_graph.resCap(e)); |
|---|
| 1068 | } |
|---|
| 1069 | } |
|---|
| 1070 | } |
|---|
| 1071 | ++bfs; |
|---|
| 1072 | } //computing distances from s in the residual graph |
|---|
| 1073 | |
|---|
| 1074 | bool __augment=true; |
|---|
| 1075 | |
|---|
| 1076 | while (__augment) { |
|---|
| 1077 | __augment=false; |
|---|
| 1078 | //computing blocking flow with dfs |
|---|
| 1079 | DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F); |
|---|
| 1080 | typename MG::template NodeMap<typename MG::Edge> pred(F); |
|---|
| 1081 | pred.set(sF, INVALID); |
|---|
| 1082 | //invalid iterators for sources |
|---|
| 1083 | |
|---|
| 1084 | typename MG::template NodeMap<Num> free(F); |
|---|
| 1085 | |
|---|
| 1086 | dfs.pushAndSetReached(sF); |
|---|
| 1087 | while (!dfs.finished()) { |
|---|
| 1088 | ++dfs; |
|---|
| 1089 | if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) { |
|---|
| 1090 | if (dfs.isBNodeNewlyReached()) { |
|---|
| 1091 | typename MG::Node v=F.aNode(dfs); |
|---|
| 1092 | typename MG::Node w=F.bNode(dfs); |
|---|
| 1093 | pred.set(w, dfs); |
|---|
| 1094 | if (F.valid(pred[v])) { |
|---|
| 1095 | free.set(w, std::min(free[v], residual_capacity[dfs])); |
|---|
| 1096 | } else { |
|---|
| 1097 | free.set(w, residual_capacity[dfs]); |
|---|
| 1098 | } |
|---|
| 1099 | if (w==tF) { |
|---|
| 1100 | __augment=true; |
|---|
| 1101 | _augment=true; |
|---|
| 1102 | break; |
|---|
| 1103 | } |
|---|
| 1104 | |
|---|
| 1105 | } else { |
|---|
| 1106 | F.erase(/*typename MG::OutEdgeIt*/(dfs)); |
|---|
| 1107 | } |
|---|
| 1108 | } |
|---|
| 1109 | } |
|---|
| 1110 | |
|---|
| 1111 | if (__augment) { |
|---|
| 1112 | typename MG::Node n=tF; |
|---|
| 1113 | Num augment_value=free[tF]; |
|---|
| 1114 | while (F.valid(pred[n])) { |
|---|
| 1115 | typename MG::Edge e=pred[n]; |
|---|
| 1116 | res_graph.augment(original_edge[e], augment_value); |
|---|
| 1117 | n=F.source(e); |
|---|
| 1118 | if (residual_capacity[e]==augment_value) |
|---|
| 1119 | F.erase(e); |
|---|
| 1120 | else |
|---|
| 1121 | residual_capacity.set(e, residual_capacity[e]-augment_value); |
|---|
| 1122 | } |
|---|
| 1123 | } |
|---|
| 1124 | |
|---|
| 1125 | } |
|---|
| 1126 | |
|---|
| 1127 | status=AFTER_AUGMENTING; |
|---|
| 1128 | return _augment; |
|---|
| 1129 | } |
|---|
| 1130 | |
|---|
| 1131 | |
|---|
| 1132 | |
|---|
| 1133 | |
|---|
| 1134 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
|---|
| 1135 | bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2() |
|---|
| 1136 | { |
|---|
| 1137 | bool _augment=false; |
|---|
| 1138 | |
|---|
| 1139 | ResGW res_graph(*g, *capacity, *flow); |
|---|
| 1140 | |
|---|
| 1141 | //ReachedMap level(res_graph); |
|---|
| 1142 | FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); |
|---|
| 1143 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
|---|
| 1144 | |
|---|
| 1145 | bfs.pushAndSetReached(s); |
|---|
| 1146 | DistanceMap<ResGW> dist(res_graph); |
|---|
| 1147 | while ( !bfs.finished() ) { |
|---|
| 1148 | ResGWOutEdgeIt e=bfs; |
|---|
| 1149 | if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|---|
| 1150 | dist.set(res_graph.target(e), dist[res_graph.source(e)]+1); |
|---|
| 1151 | } |
|---|
| 1152 | ++bfs; |
|---|
| 1153 | } //computing distances from s in the residual graph |
|---|
| 1154 | |
|---|
| 1155 | //Subgraph containing the edges on some shortest paths |
|---|
| 1156 | ConstMap<typename ResGW::Node, bool> true_map(true); |
|---|
| 1157 | typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, |
|---|
| 1158 | DistanceMap<ResGW> > FilterResGW; |
|---|
| 1159 | FilterResGW filter_res_graph(res_graph, true_map, dist); |
|---|
| 1160 | |
|---|
| 1161 | //Subgraph, which is able to delete edges which are already |
|---|
| 1162 | //met by the dfs |
|---|
| 1163 | typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt> |
|---|
| 1164 | first_out_edges(filter_res_graph); |
|---|
| 1165 | typename FilterResGW::NodeIt v; |
|---|
| 1166 | for(filter_res_graph.first(v); filter_res_graph.valid(v); |
|---|
| 1167 | filter_res_graph.next(v)) |
|---|
| 1168 | { |
|---|
| 1169 | typename FilterResGW::OutEdgeIt e; |
|---|
| 1170 | filter_res_graph.first(e, v); |
|---|
| 1171 | first_out_edges.set(v, e); |
|---|
| 1172 | } |
|---|
| 1173 | typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW:: |
|---|
| 1174 | template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW; |
|---|
| 1175 | ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges); |
|---|
| 1176 | |
|---|
| 1177 | bool __augment=true; |
|---|
| 1178 | |
|---|
| 1179 | while (__augment) { |
|---|
| 1180 | |
|---|
| 1181 | __augment=false; |
|---|
| 1182 | //computing blocking flow with dfs |
|---|
| 1183 | DfsIterator< ErasingResGW, |
|---|
| 1184 | typename ErasingResGW::template NodeMap<bool> > |
|---|
| 1185 | dfs(erasing_res_graph); |
|---|
| 1186 | typename ErasingResGW:: |
|---|
| 1187 | template NodeMap<typename ErasingResGW::OutEdgeIt> |
|---|
| 1188 | pred(erasing_res_graph); |
|---|
| 1189 | pred.set(s, INVALID); |
|---|
| 1190 | //invalid iterators for sources |
|---|
| 1191 | |
|---|
| 1192 | typename ErasingResGW::template NodeMap<Num> |
|---|
| 1193 | free1(erasing_res_graph); |
|---|
| 1194 | |
|---|
| 1195 | dfs.pushAndSetReached |
|---|
| 1196 | ///\bug lemon 0.2 |
|---|
| 1197 | (typename ErasingResGW::Node |
|---|
| 1198 | (typename FilterResGW::Node |
|---|
| 1199 | (typename ResGW::Node(s) |
|---|
| 1200 | ) |
|---|
| 1201 | ) |
|---|
| 1202 | ); |
|---|
| 1203 | while (!dfs.finished()) { |
|---|
| 1204 | ++dfs; |
|---|
| 1205 | if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs))) |
|---|
| 1206 | { |
|---|
| 1207 | if (dfs.isBNodeNewlyReached()) { |
|---|
| 1208 | |
|---|
| 1209 | typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs); |
|---|
| 1210 | typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs); |
|---|
| 1211 | |
|---|
| 1212 | pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs)); |
|---|
| 1213 | if (erasing_res_graph.valid(pred[v])) { |
|---|
| 1214 | free1.set |
|---|
| 1215 | (w, std::min(free1[v], res_graph.resCap |
|---|
| 1216 | (typename ErasingResGW::OutEdgeIt(dfs)))); |
|---|
| 1217 | } else { |
|---|
| 1218 | free1.set |
|---|
| 1219 | (w, res_graph.resCap |
|---|
| 1220 | (typename ErasingResGW::OutEdgeIt(dfs))); |
|---|
| 1221 | } |
|---|
| 1222 | |
|---|
| 1223 | if (w==t) { |
|---|
| 1224 | __augment=true; |
|---|
| 1225 | _augment=true; |
|---|
| 1226 | break; |
|---|
| 1227 | } |
|---|
| 1228 | } else { |
|---|
| 1229 | erasing_res_graph.erase(dfs); |
|---|
| 1230 | } |
|---|
| 1231 | } |
|---|
| 1232 | } |
|---|
| 1233 | |
|---|
| 1234 | if (__augment) { |
|---|
| 1235 | typename ErasingResGW::Node |
|---|
| 1236 | n=typename FilterResGW::Node(typename ResGW::Node(t)); |
|---|
| 1237 | // typename ResGW::NodeMap<Num> a(res_graph); |
|---|
| 1238 | // typename ResGW::Node b; |
|---|
| 1239 | // Num j=a[b]; |
|---|
| 1240 | // typename FilterResGW::NodeMap<Num> a1(filter_res_graph); |
|---|
| 1241 | // typename FilterResGW::Node b1; |
|---|
| 1242 | // Num j1=a1[b1]; |
|---|
| 1243 | // typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph); |
|---|
| 1244 | // typename ErasingResGW::Node b2; |
|---|
| 1245 | // Num j2=a2[b2]; |
|---|
| 1246 | Num augment_value=free1[n]; |
|---|
| 1247 | while (erasing_res_graph.valid(pred[n])) { |
|---|
| 1248 | typename ErasingResGW::OutEdgeIt e=pred[n]; |
|---|
| 1249 | res_graph.augment(e, augment_value); |
|---|
| 1250 | n=erasing_res_graph.source(e); |
|---|
| 1251 | if (res_graph.resCap(e)==0) |
|---|
| 1252 | erasing_res_graph.erase(e); |
|---|
| 1253 | } |
|---|
| 1254 | } |
|---|
| 1255 | |
|---|
| 1256 | } //while (__augment) |
|---|
| 1257 | |
|---|
| 1258 | status=AFTER_AUGMENTING; |
|---|
| 1259 | return _augment; |
|---|
| 1260 | } |
|---|
| 1261 | |
|---|
| 1262 | |
|---|
| 1263 | } //namespace lemon |
|---|
| 1264 | |
|---|
| 1265 | #endif //LEMON_MAX_FLOW_H |
|---|
| 1266 | |
|---|
| 1267 | |
|---|
| 1268 | |
|---|
| 1269 | |
|---|