| 1 | // -*- C++ -*- | 
|---|
| 2 |  | 
|---|
| 3 | /* | 
|---|
| 4 | Heuristics: | 
|---|
| 5 | 2 phase | 
|---|
| 6 | gap | 
|---|
| 7 | list 'level_list' on the nodes on level i implemented by hand | 
|---|
| 8 | stack 'active' on the active nodes on level i | 
|---|
| 9 | runs heuristic 'highest label' for H1*n relabels | 
|---|
| 10 | runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' | 
|---|
| 11 |  | 
|---|
| 12 | Parameters H0 and H1 are initialized to 20 and 1. | 
|---|
| 13 |  | 
|---|
| 14 | Constructors: | 
|---|
| 15 |  | 
|---|
| 16 | Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if | 
|---|
| 17 | FlowMap is not constant zero, and should be true if it is | 
|---|
| 18 |  | 
|---|
| 19 | Members: | 
|---|
| 20 |  | 
|---|
| 21 | void run() | 
|---|
| 22 |  | 
|---|
| 23 | Num flowValue() : returns the value of a maximum flow | 
|---|
| 24 |  | 
|---|
| 25 | void minMinCut(CutMap& M) : sets M to the characteristic vector of the | 
|---|
| 26 | minimum min cut. M should be a map of bools initialized to false. ??Is it OK? | 
|---|
| 27 |  | 
|---|
| 28 | void maxMinCut(CutMap& M) : sets M to the characteristic vector of the | 
|---|
| 29 | maximum min cut. M should be a map of bools initialized to false. | 
|---|
| 30 |  | 
|---|
| 31 | void minCut(CutMap& M) : sets M to the characteristic vector of | 
|---|
| 32 | a min cut. M should be a map of bools initialized to false. | 
|---|
| 33 |  | 
|---|
| 34 | */ | 
|---|
| 35 |  | 
|---|
| 36 | #ifndef HUGO_MAX_FLOW_H | 
|---|
| 37 | #define HUGO_MAX_FLOW_H | 
|---|
| 38 |  | 
|---|
| 39 | #define H0 20 | 
|---|
| 40 | #define H1 1 | 
|---|
| 41 |  | 
|---|
| 42 | #include <vector> | 
|---|
| 43 | #include <queue> | 
|---|
| 44 | #include <stack> | 
|---|
| 45 |  | 
|---|
| 46 | #include <graph_wrapper.h> | 
|---|
| 47 | #include <bfs_iterator.h> | 
|---|
| 48 | #include <invalid.h> | 
|---|
| 49 | #include <maps.h> | 
|---|
| 50 | #include <for_each_macros.h> | 
|---|
| 51 |  | 
|---|
| 52 | /// \file | 
|---|
| 53 | /// \brief Dimacs file format reader. | 
|---|
| 54 |  | 
|---|
| 55 | namespace hugo { | 
|---|
| 56 |  | 
|---|
| 57 |  | 
|---|
| 58 | //  ///\author Marton Makai, Jacint Szabo | 
|---|
| 59 | /// A class for computing max flows and related quantities. | 
|---|
| 60 | template <typename Graph, typename Num, | 
|---|
| 61 | typename CapMap=typename Graph::template EdgeMap<Num>, | 
|---|
| 62 | typename FlowMap=typename Graph::template EdgeMap<Num> > | 
|---|
| 63 | class MaxFlow { | 
|---|
| 64 |  | 
|---|
| 65 | typedef typename Graph::Node Node; | 
|---|
| 66 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 67 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 68 | typedef typename Graph::InEdgeIt InEdgeIt; | 
|---|
| 69 |  | 
|---|
| 70 | typedef typename std::vector<std::stack<Node> > VecStack; | 
|---|
| 71 | typedef typename Graph::template NodeMap<Node> NNMap; | 
|---|
| 72 | typedef typename std::vector<Node> VecNode; | 
|---|
| 73 |  | 
|---|
| 74 | const Graph* g; | 
|---|
| 75 | Node s; | 
|---|
| 76 | Node t; | 
|---|
| 77 | const CapMap* capacity; | 
|---|
| 78 | FlowMap* flow; | 
|---|
| 79 | int n;      //the number of nodes of G | 
|---|
| 80 | typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; | 
|---|
| 81 | typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; | 
|---|
| 82 | typedef typename ResGW::Edge ResGWEdge; | 
|---|
| 83 | //typedef typename ResGW::template NodeMap<bool> ReachedMap; | 
|---|
| 84 | typedef typename Graph::template NodeMap<int> ReachedMap; | 
|---|
| 85 | ReachedMap level; | 
|---|
| 86 | //level works as a bool map in augmenting path algorithms | 
|---|
| 87 | //and is used by bfs for storing reached information. | 
|---|
| 88 | //In preflow, it shows levels of nodes. | 
|---|
| 89 | //typename Graph::template NodeMap<int> level; | 
|---|
| 90 | typename Graph::template NodeMap<Num> excess; | 
|---|
| 91 |  | 
|---|
| 92 | public: | 
|---|
| 93 |  | 
|---|
| 94 | ///\todo Document this | 
|---|
| 95 | enum flowEnum{ | 
|---|
| 96 | ZERO_FLOW=0, | 
|---|
| 97 | GEN_FLOW=1, | 
|---|
| 98 | PREFLOW=2 | 
|---|
| 99 | }; | 
|---|
| 100 |  | 
|---|
| 101 | MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, | 
|---|
| 102 | FlowMap& _flow) : | 
|---|
| 103 | g(&_G), s(_s), t(_t), capacity(&_capacity), | 
|---|
| 104 | flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {} | 
|---|
| 105 |  | 
|---|
| 106 | /// A max flow algorithm is run. | 
|---|
| 107 | ///\pre the flow have to be 0 at the beginning. | 
|---|
| 108 | void run() { | 
|---|
| 109 | preflow(ZERO_FLOW); | 
|---|
| 110 | } | 
|---|
| 111 |  | 
|---|
| 112 | /// A preflow algorithm is run. | 
|---|
| 113 | ///\pre The initial edge-map have to be a | 
|---|
| 114 | /// zero flow if \c fe is \c ZERO_FLOW, | 
|---|
| 115 | /// a flow if \c fe is \c GEN_FLOW, | 
|---|
| 116 | /// and a pre-flow it is \c PREFLOW. | 
|---|
| 117 | void preflow(flowEnum fe) { | 
|---|
| 118 | preflowPhase0(fe); | 
|---|
| 119 | preflowPhase1(); | 
|---|
| 120 | } | 
|---|
| 121 |  | 
|---|
| 122 | /// Run the first phase of preflow, starting from a 0 flow, from a flow, | 
|---|
| 123 | /// or from a preflow, according to \c fe. | 
|---|
| 124 | void preflowPhase0( flowEnum fe ); | 
|---|
| 125 |  | 
|---|
| 126 | /// Second phase of preflow. | 
|---|
| 127 | void preflowPhase1(); | 
|---|
| 128 |  | 
|---|
| 129 | /// Starting from a flow, this method searches for an augmenting path | 
|---|
| 130 | /// according to the Edmonds-Karp algorithm | 
|---|
| 131 | /// and augments the flow on if any. | 
|---|
| 132 | /// The return value shows if the augmentation was succesful. | 
|---|
| 133 | bool augmentOnShortestPath(); | 
|---|
| 134 |  | 
|---|
| 135 | /// Starting from a flow, this method searches for an augmenting blockin | 
|---|
| 136 | /// flow according to Dinits' algorithm and augments the flow on if any. | 
|---|
| 137 | /// The blocking flow is computed in a physically constructed | 
|---|
| 138 | /// residual graph of type \c Mutablegraph. | 
|---|
| 139 | /// The return value show sif the augmentation was succesful. | 
|---|
| 140 | template<typename MutableGraph> bool augmentOnBlockingFlow(); | 
|---|
| 141 |  | 
|---|
| 142 | /// The same as \c augmentOnBlockingFlow<MutableGraph> but the | 
|---|
| 143 | /// residual graph is not constructed physically. | 
|---|
| 144 | /// The return value shows if the augmentation was succesful. | 
|---|
| 145 | bool augmentOnBlockingFlow2(); | 
|---|
| 146 |  | 
|---|
| 147 | /// Returns the actual flow value. | 
|---|
| 148 | /// More precisely, it returns the negative excess of s, thus | 
|---|
| 149 | /// this works also for preflows. | 
|---|
| 150 | Num flowValue() { | 
|---|
| 151 | Num a=0; | 
|---|
| 152 | FOR_EACH_INC_LOC(OutEdgeIt, e, *g, s) a+=(*flow)[e]; | 
|---|
| 153 | FOR_EACH_INC_LOC(InEdgeIt, e, *g, s) a-=(*flow)[e]; | 
|---|
| 154 | return a; | 
|---|
| 155 | } | 
|---|
| 156 |  | 
|---|
| 157 | /// Should be used between preflowPhase0 and preflowPhase1. | 
|---|
| 158 | ///\todo We have to make some status variable which shows the actual state | 
|---|
| 159 | /// of the class. This enables us to determine which methods are valid | 
|---|
| 160 | /// for MinCut computation | 
|---|
| 161 | template<typename _CutMap> | 
|---|
| 162 | void actMinCut(_CutMap& M) { | 
|---|
| 163 | NodeIt v; | 
|---|
| 164 | for(g->first(v); g->valid(v); g->next(v)) { | 
|---|
| 165 | if ( level[v] < n ) { | 
|---|
| 166 | M.set(v,false); | 
|---|
| 167 | } else { | 
|---|
| 168 | M.set(v,true); | 
|---|
| 169 | } | 
|---|
| 170 | } | 
|---|
| 171 | } | 
|---|
| 172 |  | 
|---|
| 173 | /// The unique inclusionwise minimum cut is computed by | 
|---|
| 174 | /// processing a bfs from s in the residual graph. | 
|---|
| 175 | ///\pre flow have to be a max flow otherwise it will the whole node-set. | 
|---|
| 176 | template<typename _CutMap> | 
|---|
| 177 | void minMinCut(_CutMap& M) { | 
|---|
| 178 |  | 
|---|
| 179 | std::queue<Node> queue; | 
|---|
| 180 |  | 
|---|
| 181 | M.set(s,true); | 
|---|
| 182 | queue.push(s); | 
|---|
| 183 |  | 
|---|
| 184 | while (!queue.empty()) { | 
|---|
| 185 | Node w=queue.front(); | 
|---|
| 186 | queue.pop(); | 
|---|
| 187 |  | 
|---|
| 188 | OutEdgeIt e; | 
|---|
| 189 | for(g->first(e,w) ; g->valid(e); g->next(e)) { | 
|---|
| 190 | Node v=g->head(e); | 
|---|
| 191 | if (!M[v] && (*flow)[e] < (*capacity)[e] ) { | 
|---|
| 192 | queue.push(v); | 
|---|
| 193 | M.set(v, true); | 
|---|
| 194 | } | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 | InEdgeIt f; | 
|---|
| 198 | for(g->first(f,w) ; g->valid(f); g->next(f)) { | 
|---|
| 199 | Node v=g->tail(f); | 
|---|
| 200 | if (!M[v] && (*flow)[f] > 0 ) { | 
|---|
| 201 | queue.push(v); | 
|---|
| 202 | M.set(v, true); | 
|---|
| 203 | } | 
|---|
| 204 | } | 
|---|
| 205 | } | 
|---|
| 206 | } | 
|---|
| 207 |  | 
|---|
| 208 |  | 
|---|
| 209 | /// The unique inclusionwise maximum cut is computed by | 
|---|
| 210 | /// processing a reverse bfs from t in the residual graph. | 
|---|
| 211 | ///\pre flow have to be a max flow otherwise it will be empty. | 
|---|
| 212 | template<typename _CutMap> | 
|---|
| 213 | void maxMinCut(_CutMap& M) { | 
|---|
| 214 |  | 
|---|
| 215 | NodeIt v; | 
|---|
| 216 | for(g->first(v) ; g->valid(v); g->next(v)) { | 
|---|
| 217 | M.set(v, true); | 
|---|
| 218 | } | 
|---|
| 219 |  | 
|---|
| 220 | std::queue<Node> queue; | 
|---|
| 221 |  | 
|---|
| 222 | M.set(t,false); | 
|---|
| 223 | queue.push(t); | 
|---|
| 224 |  | 
|---|
| 225 | while (!queue.empty()) { | 
|---|
| 226 | Node w=queue.front(); | 
|---|
| 227 | queue.pop(); | 
|---|
| 228 |  | 
|---|
| 229 |  | 
|---|
| 230 | InEdgeIt e; | 
|---|
| 231 | for(g->first(e,w) ; g->valid(e); g->next(e)) { | 
|---|
| 232 | Node v=g->tail(e); | 
|---|
| 233 | if (M[v] && (*flow)[e] < (*capacity)[e] ) { | 
|---|
| 234 | queue.push(v); | 
|---|
| 235 | M.set(v, false); | 
|---|
| 236 | } | 
|---|
| 237 | } | 
|---|
| 238 |  | 
|---|
| 239 | OutEdgeIt f; | 
|---|
| 240 | for(g->first(f,w) ; g->valid(f); g->next(f)) { | 
|---|
| 241 | Node v=g->head(f); | 
|---|
| 242 | if (M[v] && (*flow)[f] > 0 ) { | 
|---|
| 243 | queue.push(v); | 
|---|
| 244 | M.set(v, false); | 
|---|
| 245 | } | 
|---|
| 246 | } | 
|---|
| 247 | } | 
|---|
| 248 | } | 
|---|
| 249 |  | 
|---|
| 250 |  | 
|---|
| 251 | /// A minimum cut is computed. | 
|---|
| 252 | template<typename CutMap> | 
|---|
| 253 | void minCut(CutMap& M) { minMinCut(M); } | 
|---|
| 254 |  | 
|---|
| 255 | /// | 
|---|
| 256 | void resetSource(Node _s) { s=_s; } | 
|---|
| 257 | /// | 
|---|
| 258 | void resetTarget(Node _t) { t=_t; } | 
|---|
| 259 |  | 
|---|
| 260 | /// capacity-map is changed. | 
|---|
| 261 | void resetCap(const CapMap& _cap) { capacity=&_cap; } | 
|---|
| 262 |  | 
|---|
| 263 | /// flow-map is changed. | 
|---|
| 264 | void resetFlow(FlowMap& _flow) { flow=&_flow; } | 
|---|
| 265 |  | 
|---|
| 266 |  | 
|---|
| 267 | private: | 
|---|
| 268 |  | 
|---|
| 269 | int push(Node w, VecStack& active) { | 
|---|
| 270 |  | 
|---|
| 271 | int lev=level[w]; | 
|---|
| 272 | Num exc=excess[w]; | 
|---|
| 273 | int newlevel=n;       //bound on the next level of w | 
|---|
| 274 |  | 
|---|
| 275 | OutEdgeIt e; | 
|---|
| 276 | for(g->first(e,w); g->valid(e); g->next(e)) { | 
|---|
| 277 |  | 
|---|
| 278 | if ( (*flow)[e] >= (*capacity)[e] ) continue; | 
|---|
| 279 | Node v=g->head(e); | 
|---|
| 280 |  | 
|---|
| 281 | if( lev > level[v] ) { //Push is allowed now | 
|---|
| 282 |  | 
|---|
| 283 | if ( excess[v]<=0 && v!=t && v!=s ) { | 
|---|
| 284 | int lev_v=level[v]; | 
|---|
| 285 | active[lev_v].push(v); | 
|---|
| 286 | } | 
|---|
| 287 |  | 
|---|
| 288 | Num cap=(*capacity)[e]; | 
|---|
| 289 | Num flo=(*flow)[e]; | 
|---|
| 290 | Num remcap=cap-flo; | 
|---|
| 291 |  | 
|---|
| 292 | if ( remcap >= exc ) { //A nonsaturating push. | 
|---|
| 293 |  | 
|---|
| 294 | flow->set(e, flo+exc); | 
|---|
| 295 | excess.set(v, excess[v]+exc); | 
|---|
| 296 | exc=0; | 
|---|
| 297 | break; | 
|---|
| 298 |  | 
|---|
| 299 | } else { //A saturating push. | 
|---|
| 300 | flow->set(e, cap); | 
|---|
| 301 | excess.set(v, excess[v]+remcap); | 
|---|
| 302 | exc-=remcap; | 
|---|
| 303 | } | 
|---|
| 304 | } else if ( newlevel > level[v] ) newlevel = level[v]; | 
|---|
| 305 | } //for out edges wv | 
|---|
| 306 |  | 
|---|
| 307 | if ( exc > 0 ) { | 
|---|
| 308 | InEdgeIt e; | 
|---|
| 309 | for(g->first(e,w); g->valid(e); g->next(e)) { | 
|---|
| 310 |  | 
|---|
| 311 | if( (*flow)[e] <= 0 ) continue; | 
|---|
| 312 | Node v=g->tail(e); | 
|---|
| 313 |  | 
|---|
| 314 | if( lev > level[v] ) { //Push is allowed now | 
|---|
| 315 |  | 
|---|
| 316 | if ( excess[v]<=0 && v!=t && v!=s ) { | 
|---|
| 317 | int lev_v=level[v]; | 
|---|
| 318 | active[lev_v].push(v); | 
|---|
| 319 | } | 
|---|
| 320 |  | 
|---|
| 321 | Num flo=(*flow)[e]; | 
|---|
| 322 |  | 
|---|
| 323 | if ( flo >= exc ) { //A nonsaturating push. | 
|---|
| 324 |  | 
|---|
| 325 | flow->set(e, flo-exc); | 
|---|
| 326 | excess.set(v, excess[v]+exc); | 
|---|
| 327 | exc=0; | 
|---|
| 328 | break; | 
|---|
| 329 | } else {  //A saturating push. | 
|---|
| 330 |  | 
|---|
| 331 | excess.set(v, excess[v]+flo); | 
|---|
| 332 | exc-=flo; | 
|---|
| 333 | flow->set(e,0); | 
|---|
| 334 | } | 
|---|
| 335 | } else if ( newlevel > level[v] ) newlevel = level[v]; | 
|---|
| 336 | } //for in edges vw | 
|---|
| 337 |  | 
|---|
| 338 | } // if w still has excess after the out edge for cycle | 
|---|
| 339 |  | 
|---|
| 340 | excess.set(w, exc); | 
|---|
| 341 |  | 
|---|
| 342 | return newlevel; | 
|---|
| 343 | } | 
|---|
| 344 |  | 
|---|
| 345 |  | 
|---|
| 346 | void preflowPreproc ( flowEnum fe, VecStack& active, | 
|---|
| 347 | VecNode& level_list, NNMap& left, NNMap& right ) { | 
|---|
| 348 |  | 
|---|
| 349 | std::queue<Node> bfs_queue; | 
|---|
| 350 |  | 
|---|
| 351 | switch ( fe ) { | 
|---|
| 352 | case ZERO_FLOW: | 
|---|
| 353 | { | 
|---|
| 354 | //Reverse_bfs from t, to find the starting level. | 
|---|
| 355 | level.set(t,0); | 
|---|
| 356 | bfs_queue.push(t); | 
|---|
| 357 |  | 
|---|
| 358 | while (!bfs_queue.empty()) { | 
|---|
| 359 |  | 
|---|
| 360 | Node v=bfs_queue.front(); | 
|---|
| 361 | bfs_queue.pop(); | 
|---|
| 362 | int l=level[v]+1; | 
|---|
| 363 |  | 
|---|
| 364 | InEdgeIt e; | 
|---|
| 365 | for(g->first(e,v); g->valid(e); g->next(e)) { | 
|---|
| 366 | Node w=g->tail(e); | 
|---|
| 367 | if ( level[w] == n && w != s ) { | 
|---|
| 368 | bfs_queue.push(w); | 
|---|
| 369 | Node first=level_list[l]; | 
|---|
| 370 | if ( g->valid(first) ) left.set(first,w); | 
|---|
| 371 | right.set(w,first); | 
|---|
| 372 | level_list[l]=w; | 
|---|
| 373 | level.set(w, l); | 
|---|
| 374 | } | 
|---|
| 375 | } | 
|---|
| 376 | } | 
|---|
| 377 |  | 
|---|
| 378 | //the starting flow | 
|---|
| 379 | OutEdgeIt e; | 
|---|
| 380 | for(g->first(e,s); g->valid(e); g->next(e)) | 
|---|
| 381 | { | 
|---|
| 382 | Num c=(*capacity)[e]; | 
|---|
| 383 | if ( c <= 0 ) continue; | 
|---|
| 384 | Node w=g->head(e); | 
|---|
| 385 | if ( level[w] < n ) { | 
|---|
| 386 | if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); | 
|---|
| 387 | flow->set(e, c); | 
|---|
| 388 | excess.set(w, excess[w]+c); | 
|---|
| 389 | } | 
|---|
| 390 | } | 
|---|
| 391 | break; | 
|---|
| 392 | } | 
|---|
| 393 |  | 
|---|
| 394 | case GEN_FLOW: | 
|---|
| 395 | case PREFLOW: | 
|---|
| 396 | { | 
|---|
| 397 | //Reverse_bfs from t in the residual graph, | 
|---|
| 398 | //to find the starting level. | 
|---|
| 399 | level.set(t,0); | 
|---|
| 400 | bfs_queue.push(t); | 
|---|
| 401 |  | 
|---|
| 402 | while (!bfs_queue.empty()) { | 
|---|
| 403 |  | 
|---|
| 404 | Node v=bfs_queue.front(); | 
|---|
| 405 | bfs_queue.pop(); | 
|---|
| 406 | int l=level[v]+1; | 
|---|
| 407 |  | 
|---|
| 408 | InEdgeIt e; | 
|---|
| 409 | for(g->first(e,v); g->valid(e); g->next(e)) { | 
|---|
| 410 | if ( (*capacity)[e] <= (*flow)[e] ) continue; | 
|---|
| 411 | Node w=g->tail(e); | 
|---|
| 412 | if ( level[w] == n && w != s ) { | 
|---|
| 413 | bfs_queue.push(w); | 
|---|
| 414 | Node first=level_list[l]; | 
|---|
| 415 | if ( g->valid(first) ) left.set(first,w); | 
|---|
| 416 | right.set(w,first); | 
|---|
| 417 | level_list[l]=w; | 
|---|
| 418 | level.set(w, l); | 
|---|
| 419 | } | 
|---|
| 420 | } | 
|---|
| 421 |  | 
|---|
| 422 | OutEdgeIt f; | 
|---|
| 423 | for(g->first(f,v); g->valid(f); g->next(f)) { | 
|---|
| 424 | if ( 0 >= (*flow)[f] ) continue; | 
|---|
| 425 | Node w=g->head(f); | 
|---|
| 426 | if ( level[w] == n && w != s ) { | 
|---|
| 427 | bfs_queue.push(w); | 
|---|
| 428 | Node first=level_list[l]; | 
|---|
| 429 | if ( g->valid(first) ) left.set(first,w); | 
|---|
| 430 | right.set(w,first); | 
|---|
| 431 | level_list[l]=w; | 
|---|
| 432 | level.set(w, l); | 
|---|
| 433 | } | 
|---|
| 434 | } | 
|---|
| 435 | } | 
|---|
| 436 |  | 
|---|
| 437 |  | 
|---|
| 438 | //the starting flow | 
|---|
| 439 | OutEdgeIt e; | 
|---|
| 440 | for(g->first(e,s); g->valid(e); g->next(e)) | 
|---|
| 441 | { | 
|---|
| 442 | Num rem=(*capacity)[e]-(*flow)[e]; | 
|---|
| 443 | if ( rem <= 0 ) continue; | 
|---|
| 444 | Node w=g->head(e); | 
|---|
| 445 | if ( level[w] < n ) { | 
|---|
| 446 | if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); | 
|---|
| 447 | flow->set(e, (*capacity)[e]); | 
|---|
| 448 | excess.set(w, excess[w]+rem); | 
|---|
| 449 | } | 
|---|
| 450 | } | 
|---|
| 451 |  | 
|---|
| 452 | InEdgeIt f; | 
|---|
| 453 | for(g->first(f,s); g->valid(f); g->next(f)) | 
|---|
| 454 | { | 
|---|
| 455 | if ( (*flow)[f] <= 0 ) continue; | 
|---|
| 456 | Node w=g->tail(f); | 
|---|
| 457 | if ( level[w] < n ) { | 
|---|
| 458 | if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); | 
|---|
| 459 | excess.set(w, excess[w]+(*flow)[f]); | 
|---|
| 460 | flow->set(f, 0); | 
|---|
| 461 | } | 
|---|
| 462 | } | 
|---|
| 463 | break; | 
|---|
| 464 | } //case PREFLOW | 
|---|
| 465 | } | 
|---|
| 466 | } //preflowPreproc | 
|---|
| 467 |  | 
|---|
| 468 |  | 
|---|
| 469 |  | 
|---|
| 470 | void relabel(Node w, int newlevel, VecStack& active, | 
|---|
| 471 | VecNode& level_list, NNMap& left, | 
|---|
| 472 | NNMap& right, int& b, int& k, bool what_heur ) | 
|---|
| 473 | { | 
|---|
| 474 |  | 
|---|
| 475 | Num lev=level[w]; | 
|---|
| 476 |  | 
|---|
| 477 | Node right_n=right[w]; | 
|---|
| 478 | Node left_n=left[w]; | 
|---|
| 479 |  | 
|---|
| 480 | //unlacing starts | 
|---|
| 481 | if ( g->valid(right_n) ) { | 
|---|
| 482 | if ( g->valid(left_n) ) { | 
|---|
| 483 | right.set(left_n, right_n); | 
|---|
| 484 | left.set(right_n, left_n); | 
|---|
| 485 | } else { | 
|---|
| 486 | level_list[lev]=right_n; | 
|---|
| 487 | left.set(right_n, INVALID); | 
|---|
| 488 | } | 
|---|
| 489 | } else { | 
|---|
| 490 | if ( g->valid(left_n) ) { | 
|---|
| 491 | right.set(left_n, INVALID); | 
|---|
| 492 | } else { | 
|---|
| 493 | level_list[lev]=INVALID; | 
|---|
| 494 | } | 
|---|
| 495 | } | 
|---|
| 496 | //unlacing ends | 
|---|
| 497 |  | 
|---|
| 498 | if ( !g->valid(level_list[lev]) ) { | 
|---|
| 499 |  | 
|---|
| 500 | //gapping starts | 
|---|
| 501 | for (int i=lev; i!=k ; ) { | 
|---|
| 502 | Node v=level_list[++i]; | 
|---|
| 503 | while ( g->valid(v) ) { | 
|---|
| 504 | level.set(v,n); | 
|---|
| 505 | v=right[v]; | 
|---|
| 506 | } | 
|---|
| 507 | level_list[i]=INVALID; | 
|---|
| 508 | if ( !what_heur ) { | 
|---|
| 509 | while ( !active[i].empty() ) { | 
|---|
| 510 | active[i].pop();    //FIXME: ezt szebben kene | 
|---|
| 511 | } | 
|---|
| 512 | } | 
|---|
| 513 | } | 
|---|
| 514 |  | 
|---|
| 515 | level.set(w,n); | 
|---|
| 516 | b=lev-1; | 
|---|
| 517 | k=b; | 
|---|
| 518 | //gapping ends | 
|---|
| 519 |  | 
|---|
| 520 | } else { | 
|---|
| 521 |  | 
|---|
| 522 | if ( newlevel == n ) level.set(w,n); | 
|---|
| 523 | else { | 
|---|
| 524 | level.set(w,++newlevel); | 
|---|
| 525 | active[newlevel].push(w); | 
|---|
| 526 | if ( what_heur ) b=newlevel; | 
|---|
| 527 | if ( k < newlevel ) ++k;      //now k=newlevel | 
|---|
| 528 | Node first=level_list[newlevel]; | 
|---|
| 529 | if ( g->valid(first) ) left.set(first,w); | 
|---|
| 530 | right.set(w,first); | 
|---|
| 531 | left.set(w,INVALID); | 
|---|
| 532 | level_list[newlevel]=w; | 
|---|
| 533 | } | 
|---|
| 534 | } | 
|---|
| 535 |  | 
|---|
| 536 | } //relabel | 
|---|
| 537 |  | 
|---|
| 538 |  | 
|---|
| 539 | template<typename MapGraphWrapper> | 
|---|
| 540 | class DistanceMap { | 
|---|
| 541 | protected: | 
|---|
| 542 | const MapGraphWrapper* g; | 
|---|
| 543 | typename MapGraphWrapper::template NodeMap<int> dist; | 
|---|
| 544 | public: | 
|---|
| 545 | DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { } | 
|---|
| 546 | void set(const typename MapGraphWrapper::Node& n, int a) { | 
|---|
| 547 | dist.set(n, a); | 
|---|
| 548 | } | 
|---|
| 549 | int operator[](const typename MapGraphWrapper::Node& n) | 
|---|
| 550 | { return dist[n]; } | 
|---|
| 551 | //       int get(const typename MapGraphWrapper::Node& n) const { | 
|---|
| 552 | //        return dist[n]; } | 
|---|
| 553 | //       bool get(const typename MapGraphWrapper::Edge& e) const { | 
|---|
| 554 | //        return (dist.get(g->tail(e))<dist.get(g->head(e))); } | 
|---|
| 555 | bool operator[](const typename MapGraphWrapper::Edge& e) const { | 
|---|
| 556 | return (dist[g->tail(e)]<dist[g->head(e)]); | 
|---|
| 557 | } | 
|---|
| 558 | }; | 
|---|
| 559 |  | 
|---|
| 560 | }; | 
|---|
| 561 |  | 
|---|
| 562 |  | 
|---|
| 563 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> | 
|---|
| 564 | void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase0( flowEnum fe ) | 
|---|
| 565 | { | 
|---|
| 566 |  | 
|---|
| 567 | int heur0=(int)(H0*n);  //time while running 'bound decrease' | 
|---|
| 568 | int heur1=(int)(H1*n);  //time while running 'highest label' | 
|---|
| 569 | int heur=heur1;         //starting time interval (#of relabels) | 
|---|
| 570 | int numrelabel=0; | 
|---|
| 571 |  | 
|---|
| 572 | bool what_heur=1; | 
|---|
| 573 | //It is 0 in case 'bound decrease' and 1 in case 'highest label' | 
|---|
| 574 |  | 
|---|
| 575 | bool end=false; | 
|---|
| 576 | //Needed for 'bound decrease', true means no active nodes are above bound b. | 
|---|
| 577 |  | 
|---|
| 578 | int k=n-2;  //bound on the highest level under n containing a node | 
|---|
| 579 | int b=k;    //bound on the highest level under n of an active node | 
|---|
| 580 |  | 
|---|
| 581 | VecStack active(n); | 
|---|
| 582 |  | 
|---|
| 583 | NNMap left(*g, INVALID); | 
|---|
| 584 | NNMap right(*g, INVALID); | 
|---|
| 585 | VecNode level_list(n,INVALID); | 
|---|
| 586 | //List of the nodes in level i<n, set to n. | 
|---|
| 587 |  | 
|---|
| 588 | NodeIt v; | 
|---|
| 589 | for(g->first(v); g->valid(v); g->next(v)) level.set(v,n); | 
|---|
| 590 | //setting each node to level n | 
|---|
| 591 |  | 
|---|
| 592 | switch ( fe ) { | 
|---|
| 593 | case PREFLOW: | 
|---|
| 594 | { | 
|---|
| 595 | //counting the excess | 
|---|
| 596 | NodeIt v; | 
|---|
| 597 | for(g->first(v); g->valid(v); g->next(v)) { | 
|---|
| 598 | Num exc=0; | 
|---|
| 599 |  | 
|---|
| 600 | InEdgeIt e; | 
|---|
| 601 | for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e]; | 
|---|
| 602 | OutEdgeIt f; | 
|---|
| 603 | for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f]; | 
|---|
| 604 |  | 
|---|
| 605 | excess.set(v,exc); | 
|---|
| 606 |  | 
|---|
| 607 | //putting the active nodes into the stack | 
|---|
| 608 | int lev=level[v]; | 
|---|
| 609 | if ( exc > 0 && lev < n && v != t ) active[lev].push(v); | 
|---|
| 610 | } | 
|---|
| 611 | break; | 
|---|
| 612 | } | 
|---|
| 613 | case GEN_FLOW: | 
|---|
| 614 | { | 
|---|
| 615 | //Counting the excess of t | 
|---|
| 616 | Num exc=0; | 
|---|
| 617 |  | 
|---|
| 618 | InEdgeIt e; | 
|---|
| 619 | for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e]; | 
|---|
| 620 | OutEdgeIt f; | 
|---|
| 621 | for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f]; | 
|---|
| 622 |  | 
|---|
| 623 | excess.set(t,exc); | 
|---|
| 624 |  | 
|---|
| 625 | break; | 
|---|
| 626 | } | 
|---|
| 627 | default: | 
|---|
| 628 | break; | 
|---|
| 629 | } | 
|---|
| 630 |  | 
|---|
| 631 | preflowPreproc( fe, active, level_list, left, right ); | 
|---|
| 632 | //End of preprocessing | 
|---|
| 633 |  | 
|---|
| 634 |  | 
|---|
| 635 | //Push/relabel on the highest level active nodes. | 
|---|
| 636 | while ( true ) { | 
|---|
| 637 | if ( b == 0 ) { | 
|---|
| 638 | if ( !what_heur && !end && k > 0 ) { | 
|---|
| 639 | b=k; | 
|---|
| 640 | end=true; | 
|---|
| 641 | } else break; | 
|---|
| 642 | } | 
|---|
| 643 |  | 
|---|
| 644 | if ( active[b].empty() ) --b; | 
|---|
| 645 | else { | 
|---|
| 646 | end=false; | 
|---|
| 647 | Node w=active[b].top(); | 
|---|
| 648 | active[b].pop(); | 
|---|
| 649 | int newlevel=push(w,active); | 
|---|
| 650 | if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, | 
|---|
| 651 | left, right, b, k, what_heur); | 
|---|
| 652 |  | 
|---|
| 653 | ++numrelabel; | 
|---|
| 654 | if ( numrelabel >= heur ) { | 
|---|
| 655 | numrelabel=0; | 
|---|
| 656 | if ( what_heur ) { | 
|---|
| 657 | what_heur=0; | 
|---|
| 658 | heur=heur0; | 
|---|
| 659 | end=false; | 
|---|
| 660 | } else { | 
|---|
| 661 | what_heur=1; | 
|---|
| 662 | heur=heur1; | 
|---|
| 663 | b=k; | 
|---|
| 664 | } | 
|---|
| 665 | } | 
|---|
| 666 | } | 
|---|
| 667 | } | 
|---|
| 668 | } | 
|---|
| 669 |  | 
|---|
| 670 |  | 
|---|
| 671 |  | 
|---|
| 672 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> | 
|---|
| 673 | void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1() | 
|---|
| 674 | { | 
|---|
| 675 |  | 
|---|
| 676 | int k=n-2;  //bound on the highest level under n containing a node | 
|---|
| 677 | int b=k;    //bound on the highest level under n of an active node | 
|---|
| 678 |  | 
|---|
| 679 | VecStack active(n); | 
|---|
| 680 | level.set(s,0); | 
|---|
| 681 | std::queue<Node> bfs_queue; | 
|---|
| 682 | bfs_queue.push(s); | 
|---|
| 683 |  | 
|---|
| 684 | while (!bfs_queue.empty()) { | 
|---|
| 685 |  | 
|---|
| 686 | Node v=bfs_queue.front(); | 
|---|
| 687 | bfs_queue.pop(); | 
|---|
| 688 | int l=level[v]+1; | 
|---|
| 689 |  | 
|---|
| 690 | InEdgeIt e; | 
|---|
| 691 | for(g->first(e,v); g->valid(e); g->next(e)) { | 
|---|
| 692 | if ( (*capacity)[e] <= (*flow)[e] ) continue; | 
|---|
| 693 | Node u=g->tail(e); | 
|---|
| 694 | if ( level[u] >= n ) { | 
|---|
| 695 | bfs_queue.push(u); | 
|---|
| 696 | level.set(u, l); | 
|---|
| 697 | if ( excess[u] > 0 ) active[l].push(u); | 
|---|
| 698 | } | 
|---|
| 699 | } | 
|---|
| 700 |  | 
|---|
| 701 | OutEdgeIt f; | 
|---|
| 702 | for(g->first(f,v); g->valid(f); g->next(f)) { | 
|---|
| 703 | if ( 0 >= (*flow)[f] ) continue; | 
|---|
| 704 | Node u=g->head(f); | 
|---|
| 705 | if ( level[u] >= n ) { | 
|---|
| 706 | bfs_queue.push(u); | 
|---|
| 707 | level.set(u, l); | 
|---|
| 708 | if ( excess[u] > 0 ) active[l].push(u); | 
|---|
| 709 | } | 
|---|
| 710 | } | 
|---|
| 711 | } | 
|---|
| 712 | b=n-2; | 
|---|
| 713 |  | 
|---|
| 714 | while ( true ) { | 
|---|
| 715 |  | 
|---|
| 716 | if ( b == 0 ) break; | 
|---|
| 717 |  | 
|---|
| 718 | if ( active[b].empty() ) --b; | 
|---|
| 719 | else { | 
|---|
| 720 | Node w=active[b].top(); | 
|---|
| 721 | active[b].pop(); | 
|---|
| 722 | int newlevel=push(w,active); | 
|---|
| 723 |  | 
|---|
| 724 | //relabel | 
|---|
| 725 | if ( excess[w] > 0 ) { | 
|---|
| 726 | level.set(w,++newlevel); | 
|---|
| 727 | active[newlevel].push(w); | 
|---|
| 728 | b=newlevel; | 
|---|
| 729 | } | 
|---|
| 730 | }  // if stack[b] is nonempty | 
|---|
| 731 | } // while(true) | 
|---|
| 732 | } | 
|---|
| 733 |  | 
|---|
| 734 |  | 
|---|
| 735 |  | 
|---|
| 736 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> | 
|---|
| 737 | bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath() | 
|---|
| 738 | { | 
|---|
| 739 | ResGW res_graph(*g, *capacity, *flow); | 
|---|
| 740 | bool _augment=false; | 
|---|
| 741 |  | 
|---|
| 742 | //ReachedMap level(res_graph); | 
|---|
| 743 | FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); | 
|---|
| 744 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); | 
|---|
| 745 | bfs.pushAndSetReached(s); | 
|---|
| 746 |  | 
|---|
| 747 | typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); | 
|---|
| 748 | pred.set(s, INVALID); | 
|---|
| 749 |  | 
|---|
| 750 | typename ResGW::template NodeMap<Num> free(res_graph); | 
|---|
| 751 |  | 
|---|
| 752 | //searching for augmenting path | 
|---|
| 753 | while ( !bfs.finished() ) { | 
|---|
| 754 | ResGWOutEdgeIt e=bfs; | 
|---|
| 755 | if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { | 
|---|
| 756 | Node v=res_graph.tail(e); | 
|---|
| 757 | Node w=res_graph.head(e); | 
|---|
| 758 | pred.set(w, e); | 
|---|
| 759 | if (res_graph.valid(pred[v])) { | 
|---|
| 760 | free.set(w, std::min(free[v], res_graph.resCap(e))); | 
|---|
| 761 | } else { | 
|---|
| 762 | free.set(w, res_graph.resCap(e)); | 
|---|
| 763 | } | 
|---|
| 764 | if (res_graph.head(e)==t) { _augment=true; break; } | 
|---|
| 765 | } | 
|---|
| 766 |  | 
|---|
| 767 | ++bfs; | 
|---|
| 768 | } //end of searching augmenting path | 
|---|
| 769 |  | 
|---|
| 770 | if (_augment) { | 
|---|
| 771 | Node n=t; | 
|---|
| 772 | Num augment_value=free[t]; | 
|---|
| 773 | while (res_graph.valid(pred[n])) { | 
|---|
| 774 | ResGWEdge e=pred[n]; | 
|---|
| 775 | res_graph.augment(e, augment_value); | 
|---|
| 776 | n=res_graph.tail(e); | 
|---|
| 777 | } | 
|---|
| 778 | } | 
|---|
| 779 |  | 
|---|
| 780 | return _augment; | 
|---|
| 781 | } | 
|---|
| 782 |  | 
|---|
| 783 |  | 
|---|
| 784 |  | 
|---|
| 785 |  | 
|---|
| 786 |  | 
|---|
| 787 |  | 
|---|
| 788 |  | 
|---|
| 789 |  | 
|---|
| 790 |  | 
|---|
| 791 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> | 
|---|
| 792 | template<typename MutableGraph> | 
|---|
| 793 | bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow() | 
|---|
| 794 | { | 
|---|
| 795 | typedef MutableGraph MG; | 
|---|
| 796 | bool _augment=false; | 
|---|
| 797 |  | 
|---|
| 798 | ResGW res_graph(*g, *capacity, *flow); | 
|---|
| 799 |  | 
|---|
| 800 | //bfs for distances on the residual graph | 
|---|
| 801 | //ReachedMap level(res_graph); | 
|---|
| 802 | FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); | 
|---|
| 803 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); | 
|---|
| 804 | bfs.pushAndSetReached(s); | 
|---|
| 805 | typename ResGW::template NodeMap<int> | 
|---|
| 806 | dist(res_graph); //filled up with 0's | 
|---|
| 807 |  | 
|---|
| 808 | //F will contain the physical copy of the residual graph | 
|---|
| 809 | //with the set of edges which are on shortest paths | 
|---|
| 810 | MG F; | 
|---|
| 811 | typename ResGW::template NodeMap<typename MG::Node> | 
|---|
| 812 | res_graph_to_F(res_graph); | 
|---|
| 813 | { | 
|---|
| 814 | typename ResGW::NodeIt n; | 
|---|
| 815 | for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) { | 
|---|
| 816 | res_graph_to_F.set(n, F.addNode()); | 
|---|
| 817 | } | 
|---|
| 818 | } | 
|---|
| 819 |  | 
|---|
| 820 | typename MG::Node sF=res_graph_to_F[s]; | 
|---|
| 821 | typename MG::Node tF=res_graph_to_F[t]; | 
|---|
| 822 | typename MG::template EdgeMap<ResGWEdge> original_edge(F); | 
|---|
| 823 | typename MG::template EdgeMap<Num> residual_capacity(F); | 
|---|
| 824 |  | 
|---|
| 825 | while ( !bfs.finished() ) { | 
|---|
| 826 | ResGWOutEdgeIt e=bfs; | 
|---|
| 827 | if (res_graph.valid(e)) { | 
|---|
| 828 | if (bfs.isBNodeNewlyReached()) { | 
|---|
| 829 | dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); | 
|---|
| 830 | typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]); | 
|---|
| 831 | original_edge.update(); | 
|---|
| 832 | original_edge.set(f, e); | 
|---|
| 833 | residual_capacity.update(); | 
|---|
| 834 | residual_capacity.set(f, res_graph.resCap(e)); | 
|---|
| 835 | } else { | 
|---|
| 836 | if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) { | 
|---|
| 837 | typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]); | 
|---|
| 838 | original_edge.update(); | 
|---|
| 839 | original_edge.set(f, e); | 
|---|
| 840 | residual_capacity.update(); | 
|---|
| 841 | residual_capacity.set(f, res_graph.resCap(e)); | 
|---|
| 842 | } | 
|---|
| 843 | } | 
|---|
| 844 | } | 
|---|
| 845 | ++bfs; | 
|---|
| 846 | } //computing distances from s in the residual graph | 
|---|
| 847 |  | 
|---|
| 848 | bool __augment=true; | 
|---|
| 849 |  | 
|---|
| 850 | while (__augment) { | 
|---|
| 851 | __augment=false; | 
|---|
| 852 | //computing blocking flow with dfs | 
|---|
| 853 | DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F); | 
|---|
| 854 | typename MG::template NodeMap<typename MG::Edge> pred(F); | 
|---|
| 855 | pred.set(sF, INVALID); | 
|---|
| 856 | //invalid iterators for sources | 
|---|
| 857 |  | 
|---|
| 858 | typename MG::template NodeMap<Num> free(F); | 
|---|
| 859 |  | 
|---|
| 860 | dfs.pushAndSetReached(sF); | 
|---|
| 861 | while (!dfs.finished()) { | 
|---|
| 862 | ++dfs; | 
|---|
| 863 | if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) { | 
|---|
| 864 | if (dfs.isBNodeNewlyReached()) { | 
|---|
| 865 | typename MG::Node v=F.aNode(dfs); | 
|---|
| 866 | typename MG::Node w=F.bNode(dfs); | 
|---|
| 867 | pred.set(w, dfs); | 
|---|
| 868 | if (F.valid(pred[v])) { | 
|---|
| 869 | free.set(w, std::min(free[v], residual_capacity[dfs])); | 
|---|
| 870 | } else { | 
|---|
| 871 | free.set(w, residual_capacity[dfs]); | 
|---|
| 872 | } | 
|---|
| 873 | if (w==tF) { | 
|---|
| 874 | __augment=true; | 
|---|
| 875 | _augment=true; | 
|---|
| 876 | break; | 
|---|
| 877 | } | 
|---|
| 878 |  | 
|---|
| 879 | } else { | 
|---|
| 880 | F.erase(/*typename MG::OutEdgeIt*/(dfs)); | 
|---|
| 881 | } | 
|---|
| 882 | } | 
|---|
| 883 | } | 
|---|
| 884 |  | 
|---|
| 885 | if (__augment) { | 
|---|
| 886 | typename MG::Node n=tF; | 
|---|
| 887 | Num augment_value=free[tF]; | 
|---|
| 888 | while (F.valid(pred[n])) { | 
|---|
| 889 | typename MG::Edge e=pred[n]; | 
|---|
| 890 | res_graph.augment(original_edge[e], augment_value); | 
|---|
| 891 | n=F.tail(e); | 
|---|
| 892 | if (residual_capacity[e]==augment_value) | 
|---|
| 893 | F.erase(e); | 
|---|
| 894 | else | 
|---|
| 895 | residual_capacity.set(e, residual_capacity[e]-augment_value); | 
|---|
| 896 | } | 
|---|
| 897 | } | 
|---|
| 898 |  | 
|---|
| 899 | } | 
|---|
| 900 |  | 
|---|
| 901 | return _augment; | 
|---|
| 902 | } | 
|---|
| 903 |  | 
|---|
| 904 |  | 
|---|
| 905 |  | 
|---|
| 906 |  | 
|---|
| 907 |  | 
|---|
| 908 |  | 
|---|
| 909 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> | 
|---|
| 910 | bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2() | 
|---|
| 911 | { | 
|---|
| 912 | bool _augment=false; | 
|---|
| 913 |  | 
|---|
| 914 | ResGW res_graph(*g, *capacity, *flow); | 
|---|
| 915 |  | 
|---|
| 916 | //ReachedMap level(res_graph); | 
|---|
| 917 | FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); | 
|---|
| 918 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); | 
|---|
| 919 |  | 
|---|
| 920 | bfs.pushAndSetReached(s); | 
|---|
| 921 | DistanceMap<ResGW> dist(res_graph); | 
|---|
| 922 | while ( !bfs.finished() ) { | 
|---|
| 923 | ResGWOutEdgeIt e=bfs; | 
|---|
| 924 | if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { | 
|---|
| 925 | dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); | 
|---|
| 926 | } | 
|---|
| 927 | ++bfs; | 
|---|
| 928 | } //computing distances from s in the residual graph | 
|---|
| 929 |  | 
|---|
| 930 | //Subgraph containing the edges on some shortest paths | 
|---|
| 931 | ConstMap<typename ResGW::Node, bool> true_map(true); | 
|---|
| 932 | typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, | 
|---|
| 933 | DistanceMap<ResGW> > FilterResGW; | 
|---|
| 934 | FilterResGW filter_res_graph(res_graph, true_map, dist); | 
|---|
| 935 |  | 
|---|
| 936 | //Subgraph, which is able to delete edges which are already | 
|---|
| 937 | //met by the dfs | 
|---|
| 938 | typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt> | 
|---|
| 939 | first_out_edges(filter_res_graph); | 
|---|
| 940 | typename FilterResGW::NodeIt v; | 
|---|
| 941 | for(filter_res_graph.first(v); filter_res_graph.valid(v); | 
|---|
| 942 | filter_res_graph.next(v)) | 
|---|
| 943 | { | 
|---|
| 944 | typename FilterResGW::OutEdgeIt e; | 
|---|
| 945 | filter_res_graph.first(e, v); | 
|---|
| 946 | first_out_edges.set(v, e); | 
|---|
| 947 | } | 
|---|
| 948 | typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW:: | 
|---|
| 949 | template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW; | 
|---|
| 950 | ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges); | 
|---|
| 951 |  | 
|---|
| 952 | bool __augment=true; | 
|---|
| 953 |  | 
|---|
| 954 | while (__augment) { | 
|---|
| 955 |  | 
|---|
| 956 | __augment=false; | 
|---|
| 957 | //computing blocking flow with dfs | 
|---|
| 958 | DfsIterator< ErasingResGW, | 
|---|
| 959 | typename ErasingResGW::template NodeMap<bool> > | 
|---|
| 960 | dfs(erasing_res_graph); | 
|---|
| 961 | typename ErasingResGW:: | 
|---|
| 962 | template NodeMap<typename ErasingResGW::OutEdgeIt> | 
|---|
| 963 | pred(erasing_res_graph); | 
|---|
| 964 | pred.set(s, INVALID); | 
|---|
| 965 | //invalid iterators for sources | 
|---|
| 966 |  | 
|---|
| 967 | typename ErasingResGW::template NodeMap<Num> | 
|---|
| 968 | free1(erasing_res_graph); | 
|---|
| 969 |  | 
|---|
| 970 | dfs.pushAndSetReached( | 
|---|
| 971 | typename ErasingResGW::Node( | 
|---|
| 972 | typename FilterResGW::Node( | 
|---|
| 973 | typename ResGW::Node(s) | 
|---|
| 974 | ) | 
|---|
| 975 | ) | 
|---|
| 976 | ); | 
|---|
| 977 | while (!dfs.finished()) { | 
|---|
| 978 | ++dfs; | 
|---|
| 979 | if (erasing_res_graph.valid( | 
|---|
| 980 | typename ErasingResGW::OutEdgeIt(dfs))) | 
|---|
| 981 | { | 
|---|
| 982 | if (dfs.isBNodeNewlyReached()) { | 
|---|
| 983 |  | 
|---|
| 984 | typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs); | 
|---|
| 985 | typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs); | 
|---|
| 986 |  | 
|---|
| 987 | pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs)); | 
|---|
| 988 | if (erasing_res_graph.valid(pred[v])) { | 
|---|
| 989 | free1.set(w, std::min(free1[v], res_graph.resCap( | 
|---|
| 990 | typename ErasingResGW::OutEdgeIt(dfs)))); | 
|---|
| 991 | } else { | 
|---|
| 992 | free1.set(w, res_graph.resCap( | 
|---|
| 993 | typename ErasingResGW::OutEdgeIt(dfs))); | 
|---|
| 994 | } | 
|---|
| 995 |  | 
|---|
| 996 | if (w==t) { | 
|---|
| 997 | __augment=true; | 
|---|
| 998 | _augment=true; | 
|---|
| 999 | break; | 
|---|
| 1000 | } | 
|---|
| 1001 | } else { | 
|---|
| 1002 | erasing_res_graph.erase(dfs); | 
|---|
| 1003 | } | 
|---|
| 1004 | } | 
|---|
| 1005 | } | 
|---|
| 1006 |  | 
|---|
| 1007 | if (__augment) { | 
|---|
| 1008 | typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t)); | 
|---|
| 1009 | //        typename ResGW::NodeMap<Num> a(res_graph); | 
|---|
| 1010 | //        typename ResGW::Node b; | 
|---|
| 1011 | //        Num j=a[b]; | 
|---|
| 1012 | //        typename FilterResGW::NodeMap<Num> a1(filter_res_graph); | 
|---|
| 1013 | //        typename FilterResGW::Node b1; | 
|---|
| 1014 | //        Num j1=a1[b1]; | 
|---|
| 1015 | //        typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph); | 
|---|
| 1016 | //        typename ErasingResGW::Node b2; | 
|---|
| 1017 | //        Num j2=a2[b2]; | 
|---|
| 1018 | Num augment_value=free1[n]; | 
|---|
| 1019 | while (erasing_res_graph.valid(pred[n])) { | 
|---|
| 1020 | typename ErasingResGW::OutEdgeIt e=pred[n]; | 
|---|
| 1021 | res_graph.augment(e, augment_value); | 
|---|
| 1022 | n=erasing_res_graph.tail(e); | 
|---|
| 1023 | if (res_graph.resCap(e)==0) | 
|---|
| 1024 | erasing_res_graph.erase(e); | 
|---|
| 1025 | } | 
|---|
| 1026 | } | 
|---|
| 1027 |  | 
|---|
| 1028 | } //while (__augment) | 
|---|
| 1029 |  | 
|---|
| 1030 | return _augment; | 
|---|
| 1031 | } | 
|---|
| 1032 |  | 
|---|
| 1033 |  | 
|---|
| 1034 |  | 
|---|
| 1035 |  | 
|---|
| 1036 | } //namespace hugo | 
|---|
| 1037 |  | 
|---|
| 1038 | #endif //HUGO_MAX_FLOW_H | 
|---|
| 1039 |  | 
|---|
| 1040 |  | 
|---|
| 1041 |  | 
|---|
| 1042 |  | 
|---|