1 | // -*- C++ -*- |
---|
2 | |
---|
3 | //run gyorsan tudna adni a minmincutot a 2 fazis elejen , ne vegyuk be konstruktorba egy cutmapet? |
---|
4 | //constzero jo igy? |
---|
5 | |
---|
6 | //majd marci megmondja betegyem-e bfs-t meg resgraphot |
---|
7 | |
---|
8 | //constzero helyett az kell hogy flow-e vagy csak preflow, ha flow akor csak |
---|
9 | //excess[t]-t kell szmaolni |
---|
10 | |
---|
11 | /* |
---|
12 | Heuristics: |
---|
13 | 2 phase |
---|
14 | gap |
---|
15 | list 'level_list' on the nodes on level i implemented by hand |
---|
16 | stack 'active' on the active nodes on level i implemented by hand |
---|
17 | runs heuristic 'highest label' for H1*n relabels |
---|
18 | runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' |
---|
19 | |
---|
20 | Parameters H0 and H1 are initialized to 20 and 10. |
---|
21 | |
---|
22 | Constructors: |
---|
23 | |
---|
24 | Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if |
---|
25 | FlowMap is not constant zero, and should be true if it is |
---|
26 | |
---|
27 | Members: |
---|
28 | |
---|
29 | void run() |
---|
30 | |
---|
31 | T flowValue() : returns the value of a maximum flow |
---|
32 | |
---|
33 | void minMinCut(CutMap& M) : sets M to the characteristic vector of the |
---|
34 | minimum min cut. M should be a map of bools initialized to false. |
---|
35 | |
---|
36 | void maxMinCut(CutMap& M) : sets M to the characteristic vector of the |
---|
37 | maximum min cut. M should be a map of bools initialized to false. |
---|
38 | |
---|
39 | void minCut(CutMap& M) : sets M to the characteristic vector of |
---|
40 | a min cut. M should be a map of bools initialized to false. |
---|
41 | |
---|
42 | FIXME reset |
---|
43 | |
---|
44 | */ |
---|
45 | |
---|
46 | #ifndef LEMON_PREFLOW_H |
---|
47 | #define LEMON_PREFLOW_H |
---|
48 | |
---|
49 | #define H0 20 |
---|
50 | #define H1 1 |
---|
51 | |
---|
52 | #include <vector> |
---|
53 | #include <queue> |
---|
54 | #include <stack> |
---|
55 | |
---|
56 | namespace lemon { |
---|
57 | |
---|
58 | template <typename Graph, typename T, |
---|
59 | typename CapMap=typename Graph::template EdgeMap<T>, |
---|
60 | typename FlowMap=typename Graph::template EdgeMap<T> > |
---|
61 | class Preflow { |
---|
62 | |
---|
63 | typedef typename Graph::Node Node; |
---|
64 | typedef typename Graph::Edge Edge; |
---|
65 | typedef typename Graph::NodeIt NodeIt; |
---|
66 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
67 | typedef typename Graph::InEdgeIt InEdgeIt; |
---|
68 | |
---|
69 | const Graph& G; |
---|
70 | Node s; |
---|
71 | Node t; |
---|
72 | const CapMap& capacity; |
---|
73 | FlowMap& flow; |
---|
74 | T value; |
---|
75 | bool constzero; |
---|
76 | bool isflow; |
---|
77 | |
---|
78 | public: |
---|
79 | Preflow(Graph& _G, Node _s, Node _t, CapMap& _capacity, |
---|
80 | FlowMap& _flow, bool _constzero, bool _isflow ) : |
---|
81 | G(_G), s(_s), t(_t), capacity(_capacity), flow(_flow), constzero(_constzero), isflow(_isflow) {} |
---|
82 | |
---|
83 | |
---|
84 | void run() { |
---|
85 | |
---|
86 | value=0; //for the subsequent runs |
---|
87 | |
---|
88 | bool phase=0; //phase 0 is the 1st phase, phase 1 is the 2nd |
---|
89 | int n=G.nodeNum(); |
---|
90 | int heur0=(int)(H0*n); //time while running 'bound decrease' |
---|
91 | int heur1=(int)(H1*n); //time while running 'highest label' |
---|
92 | int heur=heur1; //starting time interval (#of relabels) |
---|
93 | bool what_heur=1; |
---|
94 | /* |
---|
95 | what_heur is 0 in case 'bound decrease' |
---|
96 | and 1 in case 'highest label' |
---|
97 | */ |
---|
98 | bool end=false; |
---|
99 | /* |
---|
100 | Needed for 'bound decrease', 'true' |
---|
101 | means no active nodes are above bound b. |
---|
102 | */ |
---|
103 | int relabel=0; |
---|
104 | int k=n-2; //bound on the highest level under n containing a node |
---|
105 | int b=k; //bound on the highest level under n of an active node |
---|
106 | |
---|
107 | typename Graph::template NodeMap<int> level(G,n); |
---|
108 | typename Graph::template NodeMap<T> excess(G); |
---|
109 | |
---|
110 | std::vector<std::stack<Node> > active(n); |
---|
111 | /* std::vector<Node> active(n-1,INVALID); |
---|
112 | typename Graph::template NodeMap<Node> next(G,INVALID); |
---|
113 | //Stack of the active nodes in level i < n. |
---|
114 | //We use it in both phases.*/ |
---|
115 | |
---|
116 | typename Graph::template NodeMap<Node> left(G,INVALID); |
---|
117 | typename Graph::template NodeMap<Node> right(G,INVALID); |
---|
118 | std::vector<Node> level_list(n,INVALID); |
---|
119 | /* |
---|
120 | List of the nodes in level i<n. |
---|
121 | */ |
---|
122 | |
---|
123 | |
---|
124 | if ( constzero ) { |
---|
125 | |
---|
126 | /*Reverse_bfs from t, to find the starting level.*/ |
---|
127 | level.set(t,0); |
---|
128 | std::queue<Node> bfs_queue; |
---|
129 | bfs_queue.push(t); |
---|
130 | |
---|
131 | while (!bfs_queue.empty()) { |
---|
132 | |
---|
133 | Node v=bfs_queue.front(); |
---|
134 | bfs_queue.pop(); |
---|
135 | int l=level[v]+1; |
---|
136 | |
---|
137 | InEdgeIt e; |
---|
138 | for(G.first(e,v); G.valid(e); G.next(e)) { |
---|
139 | Node w=G.source(e); |
---|
140 | if ( level[w] == n && w != s ) { |
---|
141 | bfs_queue.push(w); |
---|
142 | Node first=level_list[l]; |
---|
143 | if ( G.valid(first) ) left.set(first,w); |
---|
144 | right.set(w,first); |
---|
145 | level_list[l]=w; |
---|
146 | level.set(w, l); |
---|
147 | } |
---|
148 | } |
---|
149 | } |
---|
150 | |
---|
151 | //the starting flow |
---|
152 | OutEdgeIt e; |
---|
153 | for(G.first(e,s); G.valid(e); G.next(e)) |
---|
154 | { |
---|
155 | T c=capacity[e]; |
---|
156 | if ( c == 0 ) continue; |
---|
157 | Node w=G.target(e); |
---|
158 | if ( level[w] < n ) { |
---|
159 | if ( excess[w] == 0 && w!=t ) active[level[w]].push(w); |
---|
160 | flow.set(e, c); |
---|
161 | excess.set(w, excess[w]+c); |
---|
162 | } |
---|
163 | } |
---|
164 | } |
---|
165 | else |
---|
166 | { |
---|
167 | |
---|
168 | /* |
---|
169 | Reverse_bfs from t in the residual graph, |
---|
170 | to find the starting level. |
---|
171 | */ |
---|
172 | level.set(t,0); |
---|
173 | std::queue<Node> bfs_queue; |
---|
174 | bfs_queue.push(t); |
---|
175 | |
---|
176 | while (!bfs_queue.empty()) { |
---|
177 | |
---|
178 | Node v=bfs_queue.front(); |
---|
179 | bfs_queue.pop(); |
---|
180 | int l=level[v]+1; |
---|
181 | |
---|
182 | InEdgeIt e; |
---|
183 | for(G.first(e,v); G.valid(e); G.next(e)) { |
---|
184 | if ( capacity[e] == flow[e] ) continue; |
---|
185 | Node w=G.source(e); |
---|
186 | if ( level[w] == n && w != s ) { |
---|
187 | bfs_queue.push(w); |
---|
188 | Node first=level_list[l]; |
---|
189 | if ( G.valid(first) ) left.set(first,w); |
---|
190 | right.set(w,first); |
---|
191 | level_list[l]=w; |
---|
192 | level.set(w, l); |
---|
193 | } |
---|
194 | } |
---|
195 | |
---|
196 | OutEdgeIt f; |
---|
197 | for(G.first(f,v); G.valid(f); G.next(f)) { |
---|
198 | if ( 0 == flow[f] ) continue; |
---|
199 | Node w=G.target(f); |
---|
200 | if ( level[w] == n && w != s ) { |
---|
201 | bfs_queue.push(w); |
---|
202 | Node first=level_list[l]; |
---|
203 | if ( G.valid(first) ) left.set(first,w); |
---|
204 | right.set(w,first); |
---|
205 | level_list[l]=w; |
---|
206 | level.set(w, l); |
---|
207 | } |
---|
208 | } |
---|
209 | } |
---|
210 | |
---|
211 | |
---|
212 | /* |
---|
213 | Counting the excess |
---|
214 | */ |
---|
215 | |
---|
216 | if ( !isflow ) { |
---|
217 | NodeIt v; |
---|
218 | for(G.first(v); G.valid(v); G.next(v)) { |
---|
219 | T exc=0; |
---|
220 | |
---|
221 | InEdgeIt e; |
---|
222 | for(G.first(e,v); G.valid(e); G.next(e)) exc+=flow[e]; |
---|
223 | OutEdgeIt f; |
---|
224 | for(G.first(f,v); G.valid(f); G.next(f)) exc-=flow[f]; |
---|
225 | |
---|
226 | excess.set(v,exc); |
---|
227 | |
---|
228 | //putting the active nodes into the stack |
---|
229 | int lev=level[v]; |
---|
230 | if ( exc > 0 && lev < n && v != t ) active[lev].push(v); |
---|
231 | } |
---|
232 | } else { |
---|
233 | T exc=0; |
---|
234 | |
---|
235 | InEdgeIt e; |
---|
236 | for(G.first(e,t); G.valid(e); G.next(e)) exc+=flow[e]; |
---|
237 | OutEdgeIt f; |
---|
238 | for(G.first(f,t); G.valid(f); G.next(f)) exc-=flow[f]; |
---|
239 | |
---|
240 | excess.set(t,exc); |
---|
241 | } |
---|
242 | |
---|
243 | |
---|
244 | //the starting flow |
---|
245 | OutEdgeIt e; |
---|
246 | for(G.first(e,s); G.valid(e); G.next(e)) |
---|
247 | { |
---|
248 | T rem=capacity[e]-flow[e]; |
---|
249 | if ( rem == 0 ) continue; |
---|
250 | Node w=G.target(e); |
---|
251 | if ( level[w] < n ) { |
---|
252 | if ( excess[w] == 0 && w!=t ) active[level[w]].push(w); |
---|
253 | flow.set(e, capacity[e]); |
---|
254 | excess.set(w, excess[w]+rem); |
---|
255 | } |
---|
256 | } |
---|
257 | |
---|
258 | InEdgeIt f; |
---|
259 | for(G.first(f,s); G.valid(f); G.next(f)) |
---|
260 | { |
---|
261 | if ( flow[f] == 0 ) continue; |
---|
262 | Node w=G.source(f); |
---|
263 | if ( level[w] < n ) { |
---|
264 | if ( excess[w] == 0 && w!=t ) active[level[w]].push(w); |
---|
265 | excess.set(w, excess[w]+flow[f]); |
---|
266 | flow.set(f, 0); |
---|
267 | } |
---|
268 | } |
---|
269 | } |
---|
270 | |
---|
271 | |
---|
272 | |
---|
273 | |
---|
274 | /* |
---|
275 | End of preprocessing |
---|
276 | */ |
---|
277 | |
---|
278 | |
---|
279 | |
---|
280 | /* |
---|
281 | Push/relabel on the highest level active nodes. |
---|
282 | */ |
---|
283 | while ( true ) { |
---|
284 | |
---|
285 | if ( b == 0 ) { |
---|
286 | if ( phase ) break; |
---|
287 | |
---|
288 | if ( !what_heur && !end && k > 0 ) { |
---|
289 | b=k; |
---|
290 | end=true; |
---|
291 | } else { |
---|
292 | phase=1; |
---|
293 | level.set(s,0); |
---|
294 | std::queue<Node> bfs_queue; |
---|
295 | bfs_queue.push(s); |
---|
296 | |
---|
297 | while (!bfs_queue.empty()) { |
---|
298 | |
---|
299 | Node v=bfs_queue.front(); |
---|
300 | bfs_queue.pop(); |
---|
301 | int l=level[v]+1; |
---|
302 | |
---|
303 | InEdgeIt e; |
---|
304 | for(G.first(e,v); G.valid(e); G.next(e)) { |
---|
305 | if ( capacity[e] == flow[e] ) continue; |
---|
306 | Node u=G.source(e); |
---|
307 | if ( level[u] >= n ) { |
---|
308 | bfs_queue.push(u); |
---|
309 | level.set(u, l); |
---|
310 | if ( excess[u] > 0 ) active[l].push(u); |
---|
311 | } |
---|
312 | } |
---|
313 | |
---|
314 | OutEdgeIt f; |
---|
315 | for(G.first(f,v); G.valid(f); G.next(f)) { |
---|
316 | if ( 0 == flow[f] ) continue; |
---|
317 | Node u=G.target(f); |
---|
318 | if ( level[u] >= n ) { |
---|
319 | bfs_queue.push(u); |
---|
320 | level.set(u, l); |
---|
321 | if ( excess[u] > 0 ) active[l].push(u); |
---|
322 | } |
---|
323 | } |
---|
324 | } |
---|
325 | b=n-2; |
---|
326 | } |
---|
327 | |
---|
328 | } |
---|
329 | |
---|
330 | |
---|
331 | /// |
---|
332 | if ( active[b].empty() ) --b; |
---|
333 | else { |
---|
334 | end=false; |
---|
335 | |
---|
336 | Node w=active[b].top(); |
---|
337 | active[b].pop(); |
---|
338 | int lev=level[w]; |
---|
339 | T exc=excess[w]; |
---|
340 | int newlevel=n; //bound on the next level of w |
---|
341 | |
---|
342 | OutEdgeIt e; |
---|
343 | for(G.first(e,w); G.valid(e); G.next(e)) { |
---|
344 | |
---|
345 | if ( flow[e] == capacity[e] ) continue; |
---|
346 | Node v=G.target(e); |
---|
347 | //e=wv |
---|
348 | |
---|
349 | if( lev > level[v] ) { |
---|
350 | /*Push is allowed now*/ |
---|
351 | |
---|
352 | if ( excess[v]==0 && v!=t && v!=s ) { |
---|
353 | int lev_v=level[v]; |
---|
354 | active[lev_v].push(v); |
---|
355 | } |
---|
356 | |
---|
357 | T cap=capacity[e]; |
---|
358 | T flo=flow[e]; |
---|
359 | T remcap=cap-flo; |
---|
360 | |
---|
361 | if ( remcap >= exc ) { |
---|
362 | /*A nonsaturating push.*/ |
---|
363 | |
---|
364 | flow.set(e, flo+exc); |
---|
365 | excess.set(v, excess[v]+exc); |
---|
366 | exc=0; |
---|
367 | break; |
---|
368 | |
---|
369 | } else { |
---|
370 | /*A saturating push.*/ |
---|
371 | |
---|
372 | flow.set(e, cap); |
---|
373 | excess.set(v, excess[v]+remcap); |
---|
374 | exc-=remcap; |
---|
375 | } |
---|
376 | } else if ( newlevel > level[v] ){ |
---|
377 | newlevel = level[v]; |
---|
378 | } |
---|
379 | |
---|
380 | } //for out edges wv |
---|
381 | |
---|
382 | |
---|
383 | if ( exc > 0 ) { |
---|
384 | InEdgeIt e; |
---|
385 | for(G.first(e,w); G.valid(e); G.next(e)) { |
---|
386 | |
---|
387 | if( flow[e] == 0 ) continue; |
---|
388 | Node v=G.source(e); |
---|
389 | //e=vw |
---|
390 | |
---|
391 | if( lev > level[v] ) { |
---|
392 | /*Push is allowed now*/ |
---|
393 | |
---|
394 | if ( excess[v]==0 && v!=t && v!=s ) { |
---|
395 | int lev_v=level[v]; |
---|
396 | active[lev_v].push(v); |
---|
397 | } |
---|
398 | |
---|
399 | T flo=flow[e]; |
---|
400 | |
---|
401 | if ( flo >= exc ) { |
---|
402 | /*A nonsaturating push.*/ |
---|
403 | |
---|
404 | flow.set(e, flo-exc); |
---|
405 | excess.set(v, excess[v]+exc); |
---|
406 | exc=0; |
---|
407 | break; |
---|
408 | } else { |
---|
409 | /*A saturating push.*/ |
---|
410 | |
---|
411 | excess.set(v, excess[v]+flo); |
---|
412 | exc-=flo; |
---|
413 | flow.set(e,0); |
---|
414 | } |
---|
415 | } else if ( newlevel > level[v] ) { |
---|
416 | newlevel = level[v]; |
---|
417 | } |
---|
418 | } //for in edges vw |
---|
419 | |
---|
420 | } // if w still has excess after the out edge for cycle |
---|
421 | |
---|
422 | excess.set(w, exc); |
---|
423 | /// push |
---|
424 | |
---|
425 | |
---|
426 | /* |
---|
427 | Relabel |
---|
428 | */ |
---|
429 | |
---|
430 | |
---|
431 | if ( exc > 0 ) { |
---|
432 | //now 'lev' is the old level of w |
---|
433 | |
---|
434 | if ( phase ) { |
---|
435 | level.set(w,++newlevel); |
---|
436 | active[newlevel].push(w); |
---|
437 | b=newlevel; |
---|
438 | } else { |
---|
439 | //unlacing starts |
---|
440 | Node right_n=right[w]; |
---|
441 | Node left_n=left[w]; |
---|
442 | |
---|
443 | if ( G.valid(right_n) ) { |
---|
444 | if ( G.valid(left_n) ) { |
---|
445 | right.set(left_n, right_n); |
---|
446 | left.set(right_n, left_n); |
---|
447 | } else { |
---|
448 | level_list[lev]=right_n; |
---|
449 | left.set(right_n, INVALID); |
---|
450 | } |
---|
451 | } else { |
---|
452 | if ( G.valid(left_n) ) { |
---|
453 | right.set(left_n, INVALID); |
---|
454 | } else { |
---|
455 | level_list[lev]=INVALID; |
---|
456 | } |
---|
457 | } |
---|
458 | //unlacing ends |
---|
459 | |
---|
460 | if ( !G.valid(level_list[lev]) ) { |
---|
461 | |
---|
462 | //gapping starts |
---|
463 | for (int i=lev; i!=k ; ) { |
---|
464 | Node v=level_list[++i]; |
---|
465 | while ( G.valid(v) ) { |
---|
466 | level.set(v,n); |
---|
467 | v=right[v]; |
---|
468 | } |
---|
469 | level_list[i]=INVALID; |
---|
470 | if ( !what_heur ) { |
---|
471 | while ( !active[i].empty() ) { |
---|
472 | active[i].pop(); //FIXME: ezt szebben kene |
---|
473 | } |
---|
474 | } |
---|
475 | } |
---|
476 | |
---|
477 | level.set(w,n); |
---|
478 | b=lev-1; |
---|
479 | k=b; |
---|
480 | //gapping ends |
---|
481 | |
---|
482 | } else { |
---|
483 | |
---|
484 | if ( newlevel == n ) level.set(w,n); |
---|
485 | else { |
---|
486 | level.set(w,++newlevel); |
---|
487 | active[newlevel].push(w); |
---|
488 | if ( what_heur ) b=newlevel; |
---|
489 | if ( k < newlevel ) ++k; //now k=newlevel |
---|
490 | Node first=level_list[newlevel]; |
---|
491 | if ( G.valid(first) ) left.set(first,w); |
---|
492 | right.set(w,first); |
---|
493 | left.set(w,INVALID); |
---|
494 | level_list[newlevel]=w; |
---|
495 | } |
---|
496 | } |
---|
497 | |
---|
498 | |
---|
499 | ++relabel; |
---|
500 | if ( relabel >= heur ) { |
---|
501 | relabel=0; |
---|
502 | if ( what_heur ) { |
---|
503 | what_heur=0; |
---|
504 | heur=heur0; |
---|
505 | end=false; |
---|
506 | } else { |
---|
507 | what_heur=1; |
---|
508 | heur=heur1; |
---|
509 | b=k; |
---|
510 | } |
---|
511 | } |
---|
512 | } //phase 0 |
---|
513 | |
---|
514 | |
---|
515 | } // if ( exc > 0 ) |
---|
516 | |
---|
517 | |
---|
518 | } // if stack[b] is nonempty |
---|
519 | |
---|
520 | } // while(true) |
---|
521 | |
---|
522 | |
---|
523 | value = excess[t]; |
---|
524 | /*Max flow value.*/ |
---|
525 | |
---|
526 | } //void run() |
---|
527 | |
---|
528 | |
---|
529 | |
---|
530 | |
---|
531 | |
---|
532 | /* |
---|
533 | Returns the maximum value of a flow. |
---|
534 | */ |
---|
535 | |
---|
536 | T flowValue() { |
---|
537 | return value; |
---|
538 | } |
---|
539 | |
---|
540 | |
---|
541 | FlowMap Flow() { |
---|
542 | return flow; |
---|
543 | } |
---|
544 | |
---|
545 | |
---|
546 | void Flow(FlowMap& _flow ) { |
---|
547 | NodeIt v; |
---|
548 | for(G.first(v) ; G.valid(v); G.next(v)) |
---|
549 | _flow.set(v,flow[v]); |
---|
550 | } |
---|
551 | |
---|
552 | |
---|
553 | |
---|
554 | /* |
---|
555 | Returns the minimum min cut, by a bfs from s in the residual graph. |
---|
556 | */ |
---|
557 | |
---|
558 | template<typename _CutMap> |
---|
559 | void minMinCut(_CutMap& M) { |
---|
560 | |
---|
561 | std::queue<Node> queue; |
---|
562 | |
---|
563 | M.set(s,true); |
---|
564 | queue.push(s); |
---|
565 | |
---|
566 | while (!queue.empty()) { |
---|
567 | Node w=queue.front(); |
---|
568 | queue.pop(); |
---|
569 | |
---|
570 | OutEdgeIt e; |
---|
571 | for(G.first(e,w) ; G.valid(e); G.next(e)) { |
---|
572 | Node v=G.target(e); |
---|
573 | if (!M[v] && flow[e] < capacity[e] ) { |
---|
574 | queue.push(v); |
---|
575 | M.set(v, true); |
---|
576 | } |
---|
577 | } |
---|
578 | |
---|
579 | InEdgeIt f; |
---|
580 | for(G.first(f,w) ; G.valid(f); G.next(f)) { |
---|
581 | Node v=G.source(f); |
---|
582 | if (!M[v] && flow[f] > 0 ) { |
---|
583 | queue.push(v); |
---|
584 | M.set(v, true); |
---|
585 | } |
---|
586 | } |
---|
587 | } |
---|
588 | } |
---|
589 | |
---|
590 | |
---|
591 | |
---|
592 | /* |
---|
593 | Returns the maximum min cut, by a reverse bfs |
---|
594 | from t in the residual graph. |
---|
595 | */ |
---|
596 | |
---|
597 | template<typename _CutMap> |
---|
598 | void maxMinCut(_CutMap& M) { |
---|
599 | |
---|
600 | std::queue<Node> queue; |
---|
601 | |
---|
602 | M.set(t,true); |
---|
603 | queue.push(t); |
---|
604 | |
---|
605 | while (!queue.empty()) { |
---|
606 | Node w=queue.front(); |
---|
607 | queue.pop(); |
---|
608 | |
---|
609 | |
---|
610 | InEdgeIt e; |
---|
611 | for(G.first(e,w) ; G.valid(e); G.next(e)) { |
---|
612 | Node v=G.source(e); |
---|
613 | if (!M[v] && flow[e] < capacity[e] ) { |
---|
614 | queue.push(v); |
---|
615 | M.set(v, true); |
---|
616 | } |
---|
617 | } |
---|
618 | |
---|
619 | OutEdgeIt f; |
---|
620 | for(G.first(f,w) ; G.valid(f); G.next(f)) { |
---|
621 | Node v=G.target(f); |
---|
622 | if (!M[v] && flow[f] > 0 ) { |
---|
623 | queue.push(v); |
---|
624 | M.set(v, true); |
---|
625 | } |
---|
626 | } |
---|
627 | } |
---|
628 | |
---|
629 | NodeIt v; |
---|
630 | for(G.first(v) ; G.valid(v); G.next(v)) { |
---|
631 | M.set(v, !M[v]); |
---|
632 | } |
---|
633 | |
---|
634 | } |
---|
635 | |
---|
636 | |
---|
637 | |
---|
638 | template<typename CutMap> |
---|
639 | void minCut(CutMap& M) { |
---|
640 | minMinCut(M); |
---|
641 | } |
---|
642 | |
---|
643 | |
---|
644 | void resetTarget (Node _t) {t=_t;} |
---|
645 | void resetSource (Node _s) {s=_s;} |
---|
646 | |
---|
647 | void resetCap (CapMap _cap) {capacity=_cap;} |
---|
648 | |
---|
649 | void resetFlow (FlowMap _flow, bool _constzero) { |
---|
650 | flow=_flow; |
---|
651 | constzero=_constzero; |
---|
652 | } |
---|
653 | |
---|
654 | |
---|
655 | |
---|
656 | }; |
---|
657 | |
---|
658 | } //namespace lemon |
---|
659 | |
---|
660 | #endif //PREFLOW_H |
---|
661 | |
---|
662 | |
---|
663 | |
---|
664 | |
---|