| [173] | 1 | // -*- C++ -*- | 
|---|
|  | 2 | /* | 
|---|
| [211] | 3 | *template <Graph, T, Heap=FibHeap, LengthMap=Graph::EdgeMap<T> > | 
|---|
| [173] | 4 | * | 
|---|
|  | 5 | *Constructor: | 
|---|
|  | 6 | * | 
|---|
| [211] | 7 | *Prim(Graph G, LengthMap weight) | 
|---|
| [173] | 8 | * | 
|---|
|  | 9 | * | 
|---|
|  | 10 | *Methods: | 
|---|
|  | 11 | * | 
|---|
| [211] | 12 | *void run() : Runs the Prim-algorithm from a random node | 
|---|
| [173] | 13 | * | 
|---|
| [211] | 14 | *void run(Node r) : Runs the Prim-algorithm from node s | 
|---|
| [173] | 15 | * | 
|---|
| [211] | 16 | *T weight() : After run(r) was run, it returns the minimum | 
|---|
|  | 17 | *   weight of a spanning tree of the component of the root. | 
|---|
| [173] | 18 | * | 
|---|
| [211] | 19 | *Edge tree(Node v) : After run(r) was run, it returns the | 
|---|
|  | 20 | *   first edge in the path from v to the root. Returns | 
|---|
|  | 21 | *   INVALID if v=r or v is not reachable from the root. | 
|---|
| [173] | 22 | * | 
|---|
| [211] | 23 | *bool conn() : After run(r) was run, it is true iff G is connected | 
|---|
| [173] | 24 | * | 
|---|
| [211] | 25 | *bool reached(Node v) : After run(r) was run, it is true | 
|---|
|  | 26 | *   iff v is in the same component as the root | 
|---|
| [173] | 27 | * | 
|---|
| [211] | 28 | *Node root() : returns the root | 
|---|
| [173] | 29 | * | 
|---|
|  | 30 | */ | 
|---|
|  | 31 |  | 
|---|
| [921] | 32 | #ifndef LEMON_PRIM_H | 
|---|
|  | 33 | #define LEMON_PRIM_H | 
|---|
| [173] | 34 |  | 
|---|
|  | 35 | #include <fib_heap.h> | 
|---|
| [211] | 36 | #include <invalid.h> | 
|---|
| [173] | 37 |  | 
|---|
| [921] | 38 | namespace lemon { | 
|---|
| [173] | 39 |  | 
|---|
|  | 40 | template <typename Graph, typename T, | 
|---|
| [211] | 41 | typename Heap=FibHeap<typename Graph::Node, T, | 
|---|
|  | 42 | typename Graph::NodeMap<int> >, | 
|---|
|  | 43 | typename LengthMap=typename Graph::EdgeMap<T> > | 
|---|
| [173] | 44 | class Prim{ | 
|---|
| [211] | 45 | typedef typename Graph::Node Node; | 
|---|
| [173] | 46 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| [211] | 47 | typedef typename Graph::Edge Edge; | 
|---|
| [173] | 48 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
|  | 49 | typedef typename Graph::InEdgeIt InEdgeIt; | 
|---|
|  | 50 |  | 
|---|
| [211] | 51 | const Graph& G; | 
|---|
|  | 52 | const LengthMap& edge_weight; | 
|---|
|  | 53 | typename Graph::NodeMap<Edge> tree_edge; | 
|---|
| [173] | 54 | typename Graph::NodeMap<T> min_weight; | 
|---|
| [211] | 55 | typename Graph::NodeMap<bool> reach; | 
|---|
| [173] | 56 |  | 
|---|
|  | 57 | public : | 
|---|
|  | 58 |  | 
|---|
| [211] | 59 | Prim(Graph& _G, LengthMap& _edge_weight) : | 
|---|
|  | 60 | G(_G), edge_weight(_edge_weight), | 
|---|
|  | 61 | tree_edge(_G,INVALID), min_weight(_G), reach(_G, false) { } | 
|---|
| [173] | 62 |  | 
|---|
| [211] | 63 |  | 
|---|
|  | 64 | void run() { | 
|---|
|  | 65 | NodeIt _r; | 
|---|
|  | 66 | G.first(_r); | 
|---|
|  | 67 | run(_r); | 
|---|
| [173] | 68 | } | 
|---|
|  | 69 |  | 
|---|
|  | 70 |  | 
|---|
| [211] | 71 | void run(Node r) { | 
|---|
|  | 72 |  | 
|---|
|  | 73 | NodeIt u; | 
|---|
|  | 74 | for ( G.first(u) ; G.valid(u) ; G.next(u) ) { | 
|---|
|  | 75 | tree_edge.set(u,INVALID); | 
|---|
|  | 76 | min_weight.set(u,0); | 
|---|
|  | 77 | reach.set(u,false); | 
|---|
|  | 78 | } | 
|---|
|  | 79 |  | 
|---|
| [173] | 80 |  | 
|---|
|  | 81 | typename Graph::NodeMap<bool> scanned(G, false); | 
|---|
|  | 82 | typename Graph::NodeMap<int> heap_map(G,-1); | 
|---|
|  | 83 |  | 
|---|
|  | 84 | Heap heap(heap_map); | 
|---|
|  | 85 |  | 
|---|
|  | 86 | heap.push(r,0); | 
|---|
| [211] | 87 | reach.set(r, true); | 
|---|
| [173] | 88 |  | 
|---|
|  | 89 | while ( !heap.empty() ) { | 
|---|
|  | 90 |  | 
|---|
| [211] | 91 | Node v=heap.top(); | 
|---|
| [173] | 92 | min_weight.set(v, heap.get(v)); | 
|---|
|  | 93 | heap.pop(); | 
|---|
|  | 94 | scanned.set(v,true); | 
|---|
|  | 95 |  | 
|---|
|  | 96 | OutEdgeIt e; | 
|---|
| [211] | 97 | for( G.first(e,v); G.valid(e); G.next(e)) { | 
|---|
| [986] | 98 | Node w=G.target(e); | 
|---|
| [173] | 99 |  | 
|---|
| [211] | 100 | if ( !scanned[w] ) { | 
|---|
|  | 101 | if ( !reach[w] ) { | 
|---|
|  | 102 | reach.set(w,true); | 
|---|
|  | 103 | heap.push(w, edge_weight[e]); | 
|---|
| [173] | 104 | tree_edge.set(w,e); | 
|---|
| [211] | 105 | } else if ( edge_weight[e] < heap.get(w) ) { | 
|---|
| [173] | 106 | tree_edge.set(w,e); | 
|---|
| [211] | 107 | heap.decrease(w, edge_weight[e]); | 
|---|
| [173] | 108 | } | 
|---|
|  | 109 | } | 
|---|
|  | 110 | } | 
|---|
|  | 111 |  | 
|---|
|  | 112 | InEdgeIt f; | 
|---|
| [211] | 113 | for( G.first(f,v); G.valid(f); G.next(f)) { | 
|---|
| [986] | 114 | Node w=G.source(f); | 
|---|
| [173] | 115 |  | 
|---|
| [211] | 116 | if ( !scanned[w] ) { | 
|---|
|  | 117 | if ( !reach[w] ) { | 
|---|
|  | 118 | reach.set(w,true); | 
|---|
|  | 119 | heap.push(w, edge_weight[f]); | 
|---|
| [173] | 120 | tree_edge.set(w,f); | 
|---|
| [211] | 121 | } else if ( edge_weight[f] < heap.get(w) ) { | 
|---|
| [173] | 122 | tree_edge.set(w,f); | 
|---|
| [211] | 123 | heap.decrease(w, edge_weight[f]); | 
|---|
| [173] | 124 | } | 
|---|
|  | 125 | } | 
|---|
|  | 126 | } | 
|---|
|  | 127 | } | 
|---|
|  | 128 | } | 
|---|
|  | 129 |  | 
|---|
|  | 130 |  | 
|---|
|  | 131 | T weight() { | 
|---|
|  | 132 | T w=0; | 
|---|
| [211] | 133 | NodeIt u; | 
|---|
|  | 134 | for ( G.first(u) ; G.valid(u) ; G.next(u) ) w+=min_weight[u]; | 
|---|
| [173] | 135 | return w; | 
|---|
|  | 136 | } | 
|---|
|  | 137 |  | 
|---|
|  | 138 |  | 
|---|
| [211] | 139 | Edge tree(Node v) { | 
|---|
|  | 140 | return tree_edge[v]; | 
|---|
| [173] | 141 | } | 
|---|
|  | 142 |  | 
|---|
|  | 143 |  | 
|---|
|  | 144 | bool conn() { | 
|---|
|  | 145 | bool c=true; | 
|---|
| [211] | 146 | NodeIt u; | 
|---|
|  | 147 | for ( G.first(u) ; G.valid(u) ; G.next(u) ) | 
|---|
|  | 148 | if ( !reached[u] ) { | 
|---|
| [173] | 149 | c=false; | 
|---|
|  | 150 | break; | 
|---|
|  | 151 | } | 
|---|
|  | 152 | return c; | 
|---|
|  | 153 | } | 
|---|
|  | 154 |  | 
|---|
|  | 155 |  | 
|---|
| [211] | 156 | bool reached(Node v) { | 
|---|
|  | 157 | return reached[v]; | 
|---|
| [173] | 158 | } | 
|---|
|  | 159 |  | 
|---|
|  | 160 |  | 
|---|
| [211] | 161 | Node root() { | 
|---|
| [173] | 162 | return r; | 
|---|
|  | 163 | } | 
|---|
|  | 164 |  | 
|---|
|  | 165 | }; | 
|---|
|  | 166 |  | 
|---|
|  | 167 | } | 
|---|
|  | 168 |  | 
|---|
|  | 169 | #endif | 
|---|
|  | 170 |  | 
|---|
|  | 171 |  | 
|---|