| 1 | // -*- C++ -*- | 
|---|
| 2 | /* | 
|---|
| 3 | *template <Graph, T, Heap=FibHeap, LengthMap=Graph::EdgeMap<T> > | 
|---|
| 4 | * | 
|---|
| 5 | *Constructor: | 
|---|
| 6 | * | 
|---|
| 7 | *Prim(Graph G, LengthMap weight) | 
|---|
| 8 | * | 
|---|
| 9 | * | 
|---|
| 10 | *Methods: | 
|---|
| 11 | * | 
|---|
| 12 | *void run() : Runs the Prim-algorithm from a random node | 
|---|
| 13 | * | 
|---|
| 14 | *void run(Node r) : Runs the Prim-algorithm from node s | 
|---|
| 15 | * | 
|---|
| 16 | *T weight() : After run(r) was run, it returns the minimum | 
|---|
| 17 | *   weight of a spanning tree of the component of the root. | 
|---|
| 18 | * | 
|---|
| 19 | *Edge tree(Node v) : After run(r) was run, it returns the | 
|---|
| 20 | *   first edge in the path from v to the root. Returns | 
|---|
| 21 | *   INVALID if v=r or v is not reachable from the root. | 
|---|
| 22 | * | 
|---|
| 23 | *bool conn() : After run(r) was run, it is true iff G is connected | 
|---|
| 24 | * | 
|---|
| 25 | *bool reached(Node v) : After run(r) was run, it is true | 
|---|
| 26 | *   iff v is in the same component as the root | 
|---|
| 27 | * | 
|---|
| 28 | *Node root() : returns the root | 
|---|
| 29 | * | 
|---|
| 30 | */ | 
|---|
| 31 |  | 
|---|
| 32 | #ifndef LEMON_PRIM_H | 
|---|
| 33 | #define LEMON_PRIM_H | 
|---|
| 34 |  | 
|---|
| 35 | #include <fib_heap.h> | 
|---|
| 36 | #include <invalid.h> | 
|---|
| 37 |  | 
|---|
| 38 | namespace lemon { | 
|---|
| 39 |  | 
|---|
| 40 | template <typename Graph, typename T, | 
|---|
| 41 | typename Heap=FibHeap<typename Graph::Node, T, | 
|---|
| 42 | typename Graph::NodeMap<int> >, | 
|---|
| 43 | typename LengthMap=typename Graph::EdgeMap<T> > | 
|---|
| 44 | class Prim{ | 
|---|
| 45 | typedef typename Graph::Node Node; | 
|---|
| 46 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 47 | typedef typename Graph::Edge Edge; | 
|---|
| 48 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 49 | typedef typename Graph::InEdgeIt InEdgeIt; | 
|---|
| 50 |  | 
|---|
| 51 | const Graph& G; | 
|---|
| 52 | const LengthMap& edge_weight; | 
|---|
| 53 | typename Graph::NodeMap<Edge> tree_edge; | 
|---|
| 54 | typename Graph::NodeMap<T> min_weight; | 
|---|
| 55 | typename Graph::NodeMap<bool> reach; | 
|---|
| 56 |  | 
|---|
| 57 | public : | 
|---|
| 58 |  | 
|---|
| 59 | Prim(Graph& _G, LengthMap& _edge_weight) : | 
|---|
| 60 | G(_G), edge_weight(_edge_weight), | 
|---|
| 61 | tree_edge(_G,INVALID), min_weight(_G), reach(_G, false) { } | 
|---|
| 62 |  | 
|---|
| 63 |  | 
|---|
| 64 | void run() { | 
|---|
| 65 | NodeIt _r; | 
|---|
| 66 | G.first(_r); | 
|---|
| 67 | run(_r); | 
|---|
| 68 | } | 
|---|
| 69 |  | 
|---|
| 70 |  | 
|---|
| 71 | void run(Node r) { | 
|---|
| 72 |  | 
|---|
| 73 | NodeIt u; | 
|---|
| 74 | for ( G.first(u) ; G.valid(u) ; G.next(u) ) { | 
|---|
| 75 | tree_edge.set(u,INVALID); | 
|---|
| 76 | min_weight.set(u,0); | 
|---|
| 77 | reach.set(u,false); | 
|---|
| 78 | } | 
|---|
| 79 |  | 
|---|
| 80 |  | 
|---|
| 81 | typename Graph::NodeMap<bool> scanned(G, false); | 
|---|
| 82 | typename Graph::NodeMap<int> heap_map(G,-1); | 
|---|
| 83 |  | 
|---|
| 84 | Heap heap(heap_map); | 
|---|
| 85 |  | 
|---|
| 86 | heap.push(r,0); | 
|---|
| 87 | reach.set(r, true); | 
|---|
| 88 |  | 
|---|
| 89 | while ( !heap.empty() ) { | 
|---|
| 90 |  | 
|---|
| 91 | Node v=heap.top(); | 
|---|
| 92 | min_weight.set(v, heap.get(v)); | 
|---|
| 93 | heap.pop(); | 
|---|
| 94 | scanned.set(v,true); | 
|---|
| 95 |  | 
|---|
| 96 | OutEdgeIt e; | 
|---|
| 97 | for( G.first(e,v); G.valid(e); G.next(e)) { | 
|---|
| 98 | Node w=G.head(e); | 
|---|
| 99 |  | 
|---|
| 100 | if ( !scanned[w] ) { | 
|---|
| 101 | if ( !reach[w] ) { | 
|---|
| 102 | reach.set(w,true); | 
|---|
| 103 | heap.push(w, edge_weight[e]); | 
|---|
| 104 | tree_edge.set(w,e); | 
|---|
| 105 | } else if ( edge_weight[e] < heap.get(w) ) { | 
|---|
| 106 | tree_edge.set(w,e); | 
|---|
| 107 | heap.decrease(w, edge_weight[e]); | 
|---|
| 108 | } | 
|---|
| 109 | } | 
|---|
| 110 | } | 
|---|
| 111 |  | 
|---|
| 112 | InEdgeIt f; | 
|---|
| 113 | for( G.first(f,v); G.valid(f); G.next(f)) { | 
|---|
| 114 | Node w=G.tail(f); | 
|---|
| 115 |  | 
|---|
| 116 | if ( !scanned[w] ) { | 
|---|
| 117 | if ( !reach[w] ) { | 
|---|
| 118 | reach.set(w,true); | 
|---|
| 119 | heap.push(w, edge_weight[f]); | 
|---|
| 120 | tree_edge.set(w,f); | 
|---|
| 121 | } else if ( edge_weight[f] < heap.get(w) ) { | 
|---|
| 122 | tree_edge.set(w,f); | 
|---|
| 123 | heap.decrease(w, edge_weight[f]); | 
|---|
| 124 | } | 
|---|
| 125 | } | 
|---|
| 126 | } | 
|---|
| 127 | } | 
|---|
| 128 | } | 
|---|
| 129 |  | 
|---|
| 130 |  | 
|---|
| 131 | T weight() { | 
|---|
| 132 | T w=0; | 
|---|
| 133 | NodeIt u; | 
|---|
| 134 | for ( G.first(u) ; G.valid(u) ; G.next(u) ) w+=min_weight[u]; | 
|---|
| 135 | return w; | 
|---|
| 136 | } | 
|---|
| 137 |  | 
|---|
| 138 |  | 
|---|
| 139 | Edge tree(Node v) { | 
|---|
| 140 | return tree_edge[v]; | 
|---|
| 141 | } | 
|---|
| 142 |  | 
|---|
| 143 |  | 
|---|
| 144 | bool conn() { | 
|---|
| 145 | bool c=true; | 
|---|
| 146 | NodeIt u; | 
|---|
| 147 | for ( G.first(u) ; G.valid(u) ; G.next(u) ) | 
|---|
| 148 | if ( !reached[u] ) { | 
|---|
| 149 | c=false; | 
|---|
| 150 | break; | 
|---|
| 151 | } | 
|---|
| 152 | return c; | 
|---|
| 153 | } | 
|---|
| 154 |  | 
|---|
| 155 |  | 
|---|
| 156 | bool reached(Node v) { | 
|---|
| 157 | return reached[v]; | 
|---|
| 158 | } | 
|---|
| 159 |  | 
|---|
| 160 |  | 
|---|
| 161 | Node root() { | 
|---|
| 162 | return r; | 
|---|
| 163 | } | 
|---|
| 164 |  | 
|---|
| 165 | }; | 
|---|
| 166 |  | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | #endif | 
|---|
| 170 |  | 
|---|
| 171 |  | 
|---|