| 1 | // -*- c++ -*- | 
|---|
| 2 | #ifndef HUGO_MINLENGTHPATHS_H | 
|---|
| 3 | #define HUGO_MINLENGTHPATHS_H | 
|---|
| 4 |  | 
|---|
| 5 | ///\file | 
|---|
| 6 | ///\brief An algorithm for finding k paths of minimal total length. | 
|---|
| 7 |  | 
|---|
| 8 | #include <iostream> | 
|---|
| 9 | #include <dijkstra.h> | 
|---|
| 10 | #include <graph_wrapper.h> | 
|---|
| 11 | #include <maps.h> | 
|---|
| 12 |  | 
|---|
| 13 | namespace hugo { | 
|---|
| 14 |  | 
|---|
| 15 |  | 
|---|
| 16 | ///\brief Implementation of an algorithm for finding k paths between 2 nodes | 
|---|
| 17 | /// of minimal total length | 
|---|
| 18 | /// | 
|---|
| 19 | /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements | 
|---|
| 20 | /// an algorithm which finds k edge-disjoint paths | 
|---|
| 21 | /// from a given source node to a given target node in an | 
|---|
| 22 | /// edge-weighted directed graph having minimal total weigth (length). | 
|---|
| 23 |  | 
|---|
| 24 | template <typename Graph, typename LengthMap> | 
|---|
| 25 | class MinLengthPaths { | 
|---|
| 26 |  | 
|---|
| 27 | typedef typename LengthMap::ValueType Length; | 
|---|
| 28 |  | 
|---|
| 29 | typedef typename Graph::Node Node; | 
|---|
| 30 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 31 | typedef typename Graph::Edge Edge; | 
|---|
| 32 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 33 | typedef typename Graph::EdgeMap<int> EdgeIntMap; | 
|---|
| 34 |  | 
|---|
| 35 | typedef ConstMap<Edge,int> ConstMap; | 
|---|
| 36 |  | 
|---|
| 37 | typedef ResGraphWrapper<const Graph,int,EdgeIntMap,ConstMap> ResGraphType; | 
|---|
| 38 |  | 
|---|
| 39 |  | 
|---|
| 40 | class ModLengthMap { | 
|---|
| 41 | typedef typename ResGraphType::NodeMap<Length> NodeMap; | 
|---|
| 42 | const ResGraphType& G; | 
|---|
| 43 | const EdgeIntMap& rev; | 
|---|
| 44 | const LengthMap &ol; | 
|---|
| 45 | const NodeMap &pot; | 
|---|
| 46 | public : | 
|---|
| 47 | typedef typename LengthMap::KeyType KeyType; | 
|---|
| 48 | typedef typename LengthMap::ValueType ValueType; | 
|---|
| 49 |  | 
|---|
| 50 | ValueType operator[](typename ResGraphType::Edge e) const { | 
|---|
| 51 | if ( (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)] ) <0 ){ | 
|---|
| 52 | ///\TODO This has to be removed | 
|---|
| 53 | std::cout<<"Negative length!!"<<std::endl; | 
|---|
| 54 | } | 
|---|
| 55 | return (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); | 
|---|
| 56 | } | 
|---|
| 57 |  | 
|---|
| 58 | ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev, | 
|---|
| 59 | const LengthMap &o,  const NodeMap &p) : | 
|---|
| 60 | G(_G), rev(_rev), ol(o), pot(p){}; | 
|---|
| 61 | }; | 
|---|
| 62 |  | 
|---|
| 63 |  | 
|---|
| 64 | const Graph& G; | 
|---|
| 65 | const LengthMap& length; | 
|---|
| 66 |  | 
|---|
| 67 | //auxiliary variable | 
|---|
| 68 | //The value is 1 iff the edge is reversed | 
|---|
| 69 | EdgeIntMap reversed; | 
|---|
| 70 |  | 
|---|
| 71 |  | 
|---|
| 72 | public : | 
|---|
| 73 |  | 
|---|
| 74 |  | 
|---|
| 75 | MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G), | 
|---|
| 76 | length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ } | 
|---|
| 77 |  | 
|---|
| 78 | ///Runs the algorithm | 
|---|
| 79 |  | 
|---|
| 80 | ///Runs the algorithm | 
|---|
| 81 | ///Returns k if there are at least k edge-disjoint paths from s to t. | 
|---|
| 82 | ///Otherwise it returns the number of edge-disjoint paths from s to t. | 
|---|
| 83 | int run(Node s, Node t, int k) { | 
|---|
| 84 | ConstMap const1map(1); | 
|---|
| 85 |  | 
|---|
| 86 | ResGraphType res_graph(G, reversed, const1map); | 
|---|
| 87 |  | 
|---|
| 88 | //Initialize the copy of the Dijkstra potential to zero | 
|---|
| 89 | typename ResGraphType::NodeMap<Length> dijkstra_dist(res_graph); | 
|---|
| 90 | ModLengthMap mod_length(res_graph, reversed, length, dijkstra_dist); | 
|---|
| 91 |  | 
|---|
| 92 | Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length); | 
|---|
| 93 |  | 
|---|
| 94 | for (int i=0; i<k; ++i){ | 
|---|
| 95 | dijkstra.run(s); | 
|---|
| 96 | if (!dijkstra.reached(t)){ | 
|---|
| 97 | //There is no k path from s to t | 
|---|
| 98 | /// \TODO mit keresett itt ez a ++? | 
|---|
| 99 | return i; | 
|---|
| 100 | }; | 
|---|
| 101 |  | 
|---|
| 102 | { | 
|---|
| 103 | //We have to copy the potential | 
|---|
| 104 | typename ResGraphType::NodeIt n; | 
|---|
| 105 | for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) { | 
|---|
| 106 | dijkstra_dist[n] += dijkstra.distMap()[n]; | 
|---|
| 107 | } | 
|---|
| 108 | } | 
|---|
| 109 |  | 
|---|
| 110 |  | 
|---|
| 111 | //Reversing the sortest path | 
|---|
| 112 | Node n=t; | 
|---|
| 113 | Edge e; | 
|---|
| 114 | while (n!=s){ | 
|---|
| 115 | e = dijkstra.pred(n); | 
|---|
| 116 | n = dijkstra.predNode(n); | 
|---|
| 117 | reversed[e] = 1-reversed[e]; | 
|---|
| 118 | } | 
|---|
| 119 |  | 
|---|
| 120 |  | 
|---|
| 121 | } | 
|---|
| 122 | return k; | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 |  | 
|---|
| 126 |  | 
|---|
| 127 |  | 
|---|
| 128 |  | 
|---|
| 129 | }; //class MinLengthPaths | 
|---|
| 130 |  | 
|---|
| 131 |  | 
|---|
| 132 | } //namespace hugo | 
|---|
| 133 |  | 
|---|
| 134 | #endif //HUGO_MINLENGTHPATHS_H | 
|---|