| 1 | // -*- c++ -*- | 
|---|
| 2 | #ifndef HUGO_BFS_DFS_H | 
|---|
| 3 | #define HUGO_BFS_DFS_H | 
|---|
| 4 |  | 
|---|
| 5 | /// \ingroup galgs | 
|---|
| 6 | /// \file | 
|---|
| 7 | /// \brief Bfs and dfs iterators. | 
|---|
| 8 | /// | 
|---|
| 9 | /// This file contains bfs and dfs iterator classes. | 
|---|
| 10 | /// | 
|---|
| 11 | // /// \author Marton Makai | 
|---|
| 12 |  | 
|---|
| 13 | #include <queue> | 
|---|
| 14 | #include <stack> | 
|---|
| 15 | #include <utility> | 
|---|
| 16 |  | 
|---|
| 17 | #include <hugo/invalid.h> | 
|---|
| 18 |  | 
|---|
| 19 | namespace hugo { | 
|---|
| 20 |  | 
|---|
| 21 |   /// Bfs searches for the nodes wich are not marked in  | 
|---|
| 22 |   /// \c reached_map | 
|---|
| 23 |   /// Reached have to work as read-write bool Node-map. | 
|---|
| 24 |   /// \ingroup galgs | 
|---|
| 25 |   template <typename Graph, /*typename OutEdgeIt,*/  | 
|---|
| 26 |             typename ReachedMap/*=typename Graph::NodeMap<bool>*/ > | 
|---|
| 27 |   class BfsIterator { | 
|---|
| 28 |   protected: | 
|---|
| 29 |     typedef typename Graph::Node Node; | 
|---|
| 30 |     typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 31 |     const Graph* graph; | 
|---|
| 32 |     std::queue<Node> bfs_queue; | 
|---|
| 33 |     ReachedMap& reached; | 
|---|
| 34 |     bool b_node_newly_reached; | 
|---|
| 35 |     OutEdgeIt actual_edge; | 
|---|
| 36 |     bool own_reached_map; | 
|---|
| 37 |   public: | 
|---|
| 38 |     /// In that constructor \c _reached have to be a reference  | 
|---|
| 39 |     /// for a bool Node-map. The algorithm will search in a bfs order for  | 
|---|
| 40 |     /// the nodes which are \c false initially | 
|---|
| 41 |     BfsIterator(const Graph& _graph, ReachedMap& _reached) :  | 
|---|
| 42 |       graph(&_graph), reached(_reached),  | 
|---|
| 43 |       own_reached_map(false) { } | 
|---|
| 44 |     /// The same as above, but the map storing the reached nodes  | 
|---|
| 45 |     /// is constructed dynamically to everywhere false. | 
|---|
| 46 |     BfsIterator(const Graph& _graph) :  | 
|---|
| 47 |       graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))),  | 
|---|
| 48 |       own_reached_map(true) { } | 
|---|
| 49 |     /// The map storing the reached nodes have to be destroyed if  | 
|---|
| 50 |     /// it was constructed dynamically | 
|---|
| 51 |     ~BfsIterator() { if (own_reached_map) delete &reached; } | 
|---|
| 52 |     /// This method markes \c s reached. | 
|---|
| 53 |     /// If the queue is empty, then \c s is pushed in the bfs queue  | 
|---|
| 54 |     /// and the first out-edge is processed. | 
|---|
| 55 |     /// If the queue is not empty, then \c s is simply pushed. | 
|---|
| 56 |     void pushAndSetReached(Node s) {  | 
|---|
| 57 |       reached.set(s, true); | 
|---|
| 58 |       if (bfs_queue.empty()) { | 
|---|
| 59 |         bfs_queue.push(s); | 
|---|
| 60 |         graph->first(actual_edge, s); | 
|---|
| 61 |         if (graph->valid(actual_edge)) {  | 
|---|
| 62 |           Node w=graph->bNode(actual_edge); | 
|---|
| 63 |           if (!reached[w]) { | 
|---|
| 64 |             bfs_queue.push(w); | 
|---|
| 65 |             reached.set(w, true); | 
|---|
| 66 |             b_node_newly_reached=true; | 
|---|
| 67 |           } else { | 
|---|
| 68 |             b_node_newly_reached=false; | 
|---|
| 69 |           } | 
|---|
| 70 |         }  | 
|---|
| 71 |       } else { | 
|---|
| 72 |         bfs_queue.push(s); | 
|---|
| 73 |       } | 
|---|
| 74 |     } | 
|---|
| 75 |     /// As \c BfsIterator<Graph, ReachedMap> works as an edge-iterator,  | 
|---|
| 76 |     /// its \c operator++() iterates on the edges in a bfs order. | 
|---|
| 77 |     BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>&  | 
|---|
| 78 |     operator++() {  | 
|---|
| 79 |       if (graph->valid(actual_edge)) {  | 
|---|
| 80 |         graph->next(actual_edge); | 
|---|
| 81 |         if (graph->valid(actual_edge)) { | 
|---|
| 82 |           Node w=graph->bNode(actual_edge); | 
|---|
| 83 |           if (!reached[w]) { | 
|---|
| 84 |             bfs_queue.push(w); | 
|---|
| 85 |             reached.set(w, true); | 
|---|
| 86 |             b_node_newly_reached=true; | 
|---|
| 87 |           } else { | 
|---|
| 88 |             b_node_newly_reached=false; | 
|---|
| 89 |           } | 
|---|
| 90 |         } | 
|---|
| 91 |       } else { | 
|---|
| 92 |         bfs_queue.pop();  | 
|---|
| 93 |         if (!bfs_queue.empty()) { | 
|---|
| 94 |           graph->first(actual_edge, bfs_queue.front()); | 
|---|
| 95 |           if (graph->valid(actual_edge)) { | 
|---|
| 96 |             Node w=graph->bNode(actual_edge); | 
|---|
| 97 |             if (!reached[w]) { | 
|---|
| 98 |               bfs_queue.push(w); | 
|---|
| 99 |               reached.set(w, true); | 
|---|
| 100 |               b_node_newly_reached=true; | 
|---|
| 101 |             } else { | 
|---|
| 102 |               b_node_newly_reached=false; | 
|---|
| 103 |             } | 
|---|
| 104 |           } | 
|---|
| 105 |         } | 
|---|
| 106 |       } | 
|---|
| 107 |       return *this; | 
|---|
| 108 |     } | 
|---|
| 109 |     /// Guess what? | 
|---|
| 110 |     bool finished() const { return bfs_queue.empty(); } | 
|---|
| 111 |     /// The conversion operator makes for converting the bfs-iterator  | 
|---|
| 112 |     /// to an \c out-edge-iterator. | 
|---|
| 113 |     ///\bug Edge have to be in HUGO 0.2 | 
|---|
| 114 |     operator OutEdgeIt() const { return actual_edge; } | 
|---|
| 115 |     /// Guess what? | 
|---|
| 116 |     bool isBNodeNewlyReached() const { return b_node_newly_reached; } | 
|---|
| 117 |     /// Guess what? | 
|---|
| 118 |     bool isANodeExamined() const { return !(graph->valid(actual_edge)); } | 
|---|
| 119 |     /// Guess what? | 
|---|
| 120 |     Node aNode() const { return bfs_queue.front(); } | 
|---|
| 121 |     /// Guess what? | 
|---|
| 122 |     Node bNode() const { return graph->bNode(actual_edge); } | 
|---|
| 123 |     /// Guess what? | 
|---|
| 124 |     const ReachedMap& getReachedMap() const { return reached; } | 
|---|
| 125 |     /// Guess what? | 
|---|
| 126 |     const std::queue<Node>& getBfsQueue() const { return bfs_queue; } | 
|---|
| 127 |   }; | 
|---|
| 128 |  | 
|---|
| 129 |   /// Bfs searches for the nodes wich are not marked in  | 
|---|
| 130 |   /// \c reached_map | 
|---|
| 131 |   /// Reached have to work as a read-write bool Node-map,  | 
|---|
| 132 |   /// Pred is a write Edge Node-map and | 
|---|
| 133 |   /// Dist is a read-write Node-map of integral value, have to be.  | 
|---|
| 134 |   /// \ingroup galgs | 
|---|
| 135 |   template <typename Graph,  | 
|---|
| 136 |             typename ReachedMap=typename Graph::template NodeMap<bool>,  | 
|---|
| 137 |             typename PredMap | 
|---|
| 138 |             =typename Graph::template NodeMap<typename Graph::Edge>,  | 
|---|
| 139 |             typename DistMap=typename Graph::template NodeMap<int> >  | 
|---|
| 140 |   class Bfs : public BfsIterator<Graph, ReachedMap> { | 
|---|
| 141 |     typedef BfsIterator<Graph, ReachedMap> Parent; | 
|---|
| 142 |   protected: | 
|---|
| 143 |     typedef typename Parent::Node Node; | 
|---|
| 144 |     PredMap& pred; | 
|---|
| 145 |     DistMap& dist; | 
|---|
| 146 |   public: | 
|---|
| 147 |     /// The algorithm will search in a bfs order for  | 
|---|
| 148 |     /// the nodes which are \c false initially.  | 
|---|
| 149 |     /// The constructor makes no initial changes on the maps. | 
|---|
| 150 |     Bfs<Graph, ReachedMap, PredMap, DistMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred, DistMap& _dist) : BfsIterator<Graph, ReachedMap>(_graph, _reached), pred(&_pred), dist(&_dist) { } | 
|---|
| 151 |     /// \c s is marked to be reached and pushed in the bfs queue. | 
|---|
| 152 |     /// If the queue is empty, then the first out-edge is processed. | 
|---|
| 153 |     /// If \c s was not marked previously, then  | 
|---|
| 154 |     /// in addition its pred is set to be \c INVALID, and dist to \c 0.  | 
|---|
| 155 |     /// if \c s was marked previuosly, then it is simply pushed. | 
|---|
| 156 |     void push(Node s) {  | 
|---|
| 157 |       if (this->reached[s]) { | 
|---|
| 158 |         Parent::pushAndSetReached(s); | 
|---|
| 159 |       } else { | 
|---|
| 160 |         Parent::pushAndSetReached(s); | 
|---|
| 161 |         pred.set(s, INVALID); | 
|---|
| 162 |         dist.set(s, 0); | 
|---|
| 163 |       } | 
|---|
| 164 |     } | 
|---|
| 165 |     /// A bfs is processed from \c s. | 
|---|
| 166 |     void run(Node s) { | 
|---|
| 167 |       push(s); | 
|---|
| 168 |       while (!this->finished()) this->operator++(); | 
|---|
| 169 |     } | 
|---|
| 170 |     /// Beside the bfs iteration, \c pred and \dist are saved in a  | 
|---|
| 171 |     /// newly reached node.  | 
|---|
| 172 |     Bfs<Graph, ReachedMap, PredMap, DistMap>& operator++() { | 
|---|
| 173 |       Parent::operator++(); | 
|---|
| 174 |       if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached)  | 
|---|
| 175 |       { | 
|---|
| 176 |         pred.set(this->bNode(), this->actual_edge); | 
|---|
| 177 |         dist.set(this->bNode(), dist[this->aNode()]); | 
|---|
| 178 |       } | 
|---|
| 179 |       return *this; | 
|---|
| 180 |     } | 
|---|
| 181 |     /// Guess what? | 
|---|
| 182 |     const PredMap& getPredMap() const { return pred; } | 
|---|
| 183 |     /// Guess what? | 
|---|
| 184 |     const DistMap& getDistMap() const { return dist; } | 
|---|
| 185 |   }; | 
|---|
| 186 |  | 
|---|
| 187 |   /// Dfs searches for the nodes wich are not marked in  | 
|---|
| 188 |   /// \c reached_map | 
|---|
| 189 |   /// Reached have to be a read-write bool Node-map. | 
|---|
| 190 |   /// \ingroup galgs | 
|---|
| 191 |   template <typename Graph, /*typename OutEdgeIt,*/  | 
|---|
| 192 |             typename ReachedMap/*=typename Graph::NodeMap<bool>*/ > | 
|---|
| 193 |   class DfsIterator { | 
|---|
| 194 |   protected: | 
|---|
| 195 |     typedef typename Graph::Node Node; | 
|---|
| 196 |     typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 197 |     const Graph* graph; | 
|---|
| 198 |     std::stack<OutEdgeIt> dfs_stack; | 
|---|
| 199 |     bool b_node_newly_reached; | 
|---|
| 200 |     OutEdgeIt actual_edge; | 
|---|
| 201 |     Node actual_node; | 
|---|
| 202 |     ReachedMap& reached; | 
|---|
| 203 |     bool own_reached_map; | 
|---|
| 204 |   public: | 
|---|
| 205 |     /// In that constructor \c _reached have to be a reference  | 
|---|
| 206 |     /// for a bool Node-map. The algorithm will search in a dfs order for  | 
|---|
| 207 |     /// the nodes which are \c false initially | 
|---|
| 208 |     DfsIterator(const Graph& _graph, ReachedMap& _reached) :  | 
|---|
| 209 |       graph(&_graph), reached(_reached),  | 
|---|
| 210 |       own_reached_map(false) { } | 
|---|
| 211 |     /// The same as above, but the map of reached nodes is  | 
|---|
| 212 |     /// constructed dynamically  | 
|---|
| 213 |     /// to everywhere false. | 
|---|
| 214 |     DfsIterator(const Graph& _graph) :  | 
|---|
| 215 |       graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))),  | 
|---|
| 216 |       own_reached_map(true) { } | 
|---|
| 217 |     ~DfsIterator() { if (own_reached_map) delete &reached; } | 
|---|
| 218 |     /// This method markes s reached and first out-edge is processed. | 
|---|
| 219 |     void pushAndSetReached(Node s) {  | 
|---|
| 220 |       actual_node=s; | 
|---|
| 221 |       reached.set(s, true); | 
|---|
| 222 |       OutEdgeIt e; | 
|---|
| 223 |       graph->first(e, s); | 
|---|
| 224 |       dfs_stack.push(e);  | 
|---|
| 225 |     } | 
|---|
| 226 |     /// As \c DfsIterator<Graph, ReachedMap> works as an edge-iterator,  | 
|---|
| 227 |     /// its \c operator++() iterates on the edges in a dfs order. | 
|---|
| 228 |     DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>&  | 
|---|
| 229 |     operator++() {  | 
|---|
| 230 |       actual_edge=dfs_stack.top(); | 
|---|
| 231 |       //actual_node=G.aNode(actual_edge); | 
|---|
| 232 |       if (graph->valid(actual_edge)/*.valid()*/) {  | 
|---|
| 233 |         Node w=graph->bNode(actual_edge); | 
|---|
| 234 |         actual_node=w; | 
|---|
| 235 |         if (!reached[w]) { | 
|---|
| 236 |           OutEdgeIt e; | 
|---|
| 237 |           graph->first(e, w); | 
|---|
| 238 |           dfs_stack.push(e); | 
|---|
| 239 |           reached.set(w, true); | 
|---|
| 240 |           b_node_newly_reached=true; | 
|---|
| 241 |         } else { | 
|---|
| 242 |           actual_node=graph->aNode(actual_edge); | 
|---|
| 243 |           graph->next(dfs_stack.top()); | 
|---|
| 244 |           b_node_newly_reached=false; | 
|---|
| 245 |         } | 
|---|
| 246 |       } else { | 
|---|
| 247 |         //actual_node=G.aNode(dfs_stack.top()); | 
|---|
| 248 |         dfs_stack.pop(); | 
|---|
| 249 |       } | 
|---|
| 250 |       return *this; | 
|---|
| 251 |     } | 
|---|
| 252 |     /// Guess what? | 
|---|
| 253 |     bool finished() const { return dfs_stack.empty(); } | 
|---|
| 254 |     /// Guess what? | 
|---|
| 255 |     operator OutEdgeIt() const { return actual_edge; } | 
|---|
| 256 |     /// Guess what? | 
|---|
| 257 |     bool isBNodeNewlyReached() const { return b_node_newly_reached; } | 
|---|
| 258 |     /// Guess what? | 
|---|
| 259 |     bool isANodeExamined() const { return !(graph->valid(actual_edge)); } | 
|---|
| 260 |     /// Guess what? | 
|---|
| 261 |     Node aNode() const { return actual_node; /*FIXME*/} | 
|---|
| 262 |     /// Guess what? | 
|---|
| 263 |     Node bNode() const { return graph->bNode(actual_edge); } | 
|---|
| 264 |     /// Guess what? | 
|---|
| 265 |     const ReachedMap& getReachedMap() const { return reached; } | 
|---|
| 266 |     /// Guess what? | 
|---|
| 267 |     const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; } | 
|---|
| 268 |   }; | 
|---|
| 269 |  | 
|---|
| 270 |   /// Dfs searches for the nodes wich are not marked in  | 
|---|
| 271 |   /// \c reached_map | 
|---|
| 272 |   /// Reached is a read-write bool Node-map,  | 
|---|
| 273 |   /// Pred is a write Node-map, have to be. | 
|---|
| 274 |   /// \ingroup galgs | 
|---|
| 275 |   template <typename Graph,  | 
|---|
| 276 |             typename ReachedMap=typename Graph::template NodeMap<bool>,  | 
|---|
| 277 |             typename PredMap | 
|---|
| 278 |             =typename Graph::template NodeMap<typename Graph::Edge> >  | 
|---|
| 279 |   class Dfs : public DfsIterator<Graph, ReachedMap> { | 
|---|
| 280 |     typedef DfsIterator<Graph, ReachedMap> Parent; | 
|---|
| 281 |   protected: | 
|---|
| 282 |     typedef typename Parent::Node Node; | 
|---|
| 283 |     PredMap& pred; | 
|---|
| 284 |   public: | 
|---|
| 285 |     /// The algorithm will search in a dfs order for  | 
|---|
| 286 |     /// the nodes which are \c false initially.  | 
|---|
| 287 |     /// The constructor makes no initial changes on the maps. | 
|---|
| 288 |     Dfs<Graph, ReachedMap, PredMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred) : DfsIterator<Graph, ReachedMap>(_graph, _reached), pred(&_pred) { } | 
|---|
| 289 |     /// \c s is marked to be reached and pushed in the bfs queue. | 
|---|
| 290 |     /// If the queue is empty, then the first out-edge is processed. | 
|---|
| 291 |     /// If \c s was not marked previously, then  | 
|---|
| 292 |     /// in addition its pred is set to be \c INVALID.  | 
|---|
| 293 |     /// if \c s was marked previuosly, then it is simply pushed. | 
|---|
| 294 |     void push(Node s) {  | 
|---|
| 295 |       if (this->reached[s]) { | 
|---|
| 296 |         Parent::pushAndSetReached(s); | 
|---|
| 297 |       } else { | 
|---|
| 298 |         Parent::pushAndSetReached(s); | 
|---|
| 299 |         pred.set(s, INVALID); | 
|---|
| 300 |       } | 
|---|
| 301 |     } | 
|---|
| 302 |     /// A bfs is processed from \c s. | 
|---|
| 303 |     void run(Node s) { | 
|---|
| 304 |       push(s); | 
|---|
| 305 |       while (!this->finished()) this->operator++(); | 
|---|
| 306 |     } | 
|---|
| 307 |     /// Beside the dfs iteration, \c pred is saved in a  | 
|---|
| 308 |     /// newly reached node.  | 
|---|
| 309 |     Dfs<Graph, ReachedMap, PredMap>& operator++() { | 
|---|
| 310 |       Parent::operator++(); | 
|---|
| 311 |       if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached)  | 
|---|
| 312 |       { | 
|---|
| 313 |         pred.set(this->bNode(), this->actual_edge); | 
|---|
| 314 |       } | 
|---|
| 315 |       return *this; | 
|---|
| 316 |     } | 
|---|
| 317 |     /// Guess what? | 
|---|
| 318 |     const PredMap& getPredMap() const { return pred; } | 
|---|
| 319 |   }; | 
|---|
| 320 |  | 
|---|
| 321 |  | 
|---|
| 322 | } // namespace hugo | 
|---|
| 323 |  | 
|---|
| 324 | #endif //HUGO_BFS_DFS_H | 
|---|