| 1 | // -*- c++ -*- |
|---|
| 2 | #ifndef LEMON_BFS_DFS_H |
|---|
| 3 | #define LEMON_BFS_DFS_H |
|---|
| 4 | |
|---|
| 5 | /// \ingroup galgs |
|---|
| 6 | /// \file |
|---|
| 7 | /// \brief Bfs and dfs iterators. |
|---|
| 8 | /// |
|---|
| 9 | /// This file contains bfs and dfs iterator classes. |
|---|
| 10 | /// |
|---|
| 11 | // /// \author Marton Makai |
|---|
| 12 | |
|---|
| 13 | #include <queue> |
|---|
| 14 | #include <stack> |
|---|
| 15 | #include <utility> |
|---|
| 16 | |
|---|
| 17 | #include <lemon/invalid.h> |
|---|
| 18 | |
|---|
| 19 | namespace lemon { |
|---|
| 20 | |
|---|
| 21 | /// Bfs searches for the nodes wich are not marked in |
|---|
| 22 | /// \c reached_map |
|---|
| 23 | /// Reached have to be a read-write bool node-map. |
|---|
| 24 | /// \ingroup galgs |
|---|
| 25 | template <typename Graph, /*typename OutEdgeIt,*/ |
|---|
| 26 | typename ReachedMap/*=typename Graph::NodeMap<bool>*/ > |
|---|
| 27 | class BfsIterator { |
|---|
| 28 | protected: |
|---|
| 29 | typedef typename Graph::Node Node; |
|---|
| 30 | typedef typename Graph::Edge Edge; |
|---|
| 31 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
|---|
| 32 | const Graph* graph; |
|---|
| 33 | std::queue<Node> bfs_queue; |
|---|
| 34 | ReachedMap& reached; |
|---|
| 35 | bool b_node_newly_reached; |
|---|
| 36 | Edge actual_edge; |
|---|
| 37 | bool own_reached_map; |
|---|
| 38 | public: |
|---|
| 39 | /// In that constructor \c _reached have to be a reference |
|---|
| 40 | /// for a bool bode-map. The algorithm will search for the |
|---|
| 41 | /// initially \c false nodes |
|---|
| 42 | /// in a bfs order. |
|---|
| 43 | BfsIterator(const Graph& _graph, ReachedMap& _reached) : |
|---|
| 44 | graph(&_graph), reached(_reached), |
|---|
| 45 | own_reached_map(false) { } |
|---|
| 46 | /// The same as above, but the map storing the reached nodes |
|---|
| 47 | /// is constructed dynamically to everywhere false. |
|---|
| 48 | /// \deprecated |
|---|
| 49 | BfsIterator(const Graph& _graph) : |
|---|
| 50 | graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), |
|---|
| 51 | own_reached_map(true) { } |
|---|
| 52 | /// The map storing the reached nodes have to be destroyed if |
|---|
| 53 | /// it was constructed dynamically |
|---|
| 54 | ~BfsIterator() { if (own_reached_map) delete &reached; } |
|---|
| 55 | /// This method markes \c s reached. |
|---|
| 56 | /// If the queue is empty, then \c s is pushed in the bfs queue |
|---|
| 57 | /// and the first out-edge is processed. |
|---|
| 58 | /// If the queue is not empty, then \c s is simply pushed. |
|---|
| 59 | BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& pushAndSetReached(Node s) { |
|---|
| 60 | reached.set(s, true); |
|---|
| 61 | if (bfs_queue.empty()) { |
|---|
| 62 | bfs_queue.push(s); |
|---|
| 63 | actual_edge=OutEdgeIt(*graph, s); |
|---|
| 64 | //graph->first(actual_edge, s); |
|---|
| 65 | if (actual_edge!=INVALID) { |
|---|
| 66 | Node w=graph->target(actual_edge); |
|---|
| 67 | if (!reached[w]) { |
|---|
| 68 | bfs_queue.push(w); |
|---|
| 69 | reached.set(w, true); |
|---|
| 70 | b_node_newly_reached=true; |
|---|
| 71 | } else { |
|---|
| 72 | b_node_newly_reached=false; |
|---|
| 73 | } |
|---|
| 74 | } |
|---|
| 75 | } else { |
|---|
| 76 | bfs_queue.push(s); |
|---|
| 77 | } |
|---|
| 78 | return *this; |
|---|
| 79 | } |
|---|
| 80 | /// As \c BfsIterator<Graph, ReachedMap> works as an edge-iterator, |
|---|
| 81 | /// its \c operator++() iterates on the edges in a bfs order. |
|---|
| 82 | BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& |
|---|
| 83 | operator++() { |
|---|
| 84 | if (actual_edge!=INVALID) { |
|---|
| 85 | actual_edge=++OutEdgeIt(*graph, actual_edge); |
|---|
| 86 | //++actual_edge; |
|---|
| 87 | if (actual_edge!=INVALID) { |
|---|
| 88 | Node w=graph->target(actual_edge); |
|---|
| 89 | if (!reached[w]) { |
|---|
| 90 | bfs_queue.push(w); |
|---|
| 91 | reached.set(w, true); |
|---|
| 92 | b_node_newly_reached=true; |
|---|
| 93 | } else { |
|---|
| 94 | b_node_newly_reached=false; |
|---|
| 95 | } |
|---|
| 96 | } |
|---|
| 97 | } else { |
|---|
| 98 | bfs_queue.pop(); |
|---|
| 99 | if (!bfs_queue.empty()) { |
|---|
| 100 | actual_edge=OutEdgeIt(*graph, bfs_queue.front()); |
|---|
| 101 | //graph->first(actual_edge, bfs_queue.front()); |
|---|
| 102 | if (actual_edge!=INVALID) { |
|---|
| 103 | Node w=graph->target(actual_edge); |
|---|
| 104 | if (!reached[w]) { |
|---|
| 105 | bfs_queue.push(w); |
|---|
| 106 | reached.set(w, true); |
|---|
| 107 | b_node_newly_reached=true; |
|---|
| 108 | } else { |
|---|
| 109 | b_node_newly_reached=false; |
|---|
| 110 | } |
|---|
| 111 | } |
|---|
| 112 | } |
|---|
| 113 | } |
|---|
| 114 | return *this; |
|---|
| 115 | } |
|---|
| 116 | /// Returns true iff the algorithm is finished. |
|---|
| 117 | bool finished() const { return bfs_queue.empty(); } |
|---|
| 118 | /// The conversion operator makes for converting the bfs-iterator |
|---|
| 119 | /// to an \c out-edge-iterator. |
|---|
| 120 | ///\bug Edge have to be in LEMON 0.2 |
|---|
| 121 | operator Edge() const { return actual_edge; } |
|---|
| 122 | /// Returns if b-node has been reached just now. |
|---|
| 123 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
|---|
| 124 | /// Returns if a-node is examined. |
|---|
| 125 | bool isANodeExamined() const { return actual_edge==INVALID; } |
|---|
| 126 | /// Returns a-node of the actual edge, so does if the edge is invalid. |
|---|
| 127 | Node source() const { return bfs_queue.front(); } |
|---|
| 128 | /// \pre The actual edge have to be valid. |
|---|
| 129 | Node target() const { return graph->target(actual_edge); } |
|---|
| 130 | /// Guess what? |
|---|
| 131 | /// \deprecated |
|---|
| 132 | const ReachedMap& getReachedMap() const { return reached; } |
|---|
| 133 | /// Guess what? |
|---|
| 134 | /// \deprecated |
|---|
| 135 | const std::queue<Node>& getBfsQueue() const { return bfs_queue; } |
|---|
| 136 | }; |
|---|
| 137 | |
|---|
| 138 | /// Bfs searches for the nodes wich are not marked in |
|---|
| 139 | /// \c reached_map |
|---|
| 140 | /// Reached have to work as a read-write bool Node-map, |
|---|
| 141 | /// Pred is a write edge node-map and |
|---|
| 142 | /// Dist is a read-write node-map of integral value, have to be. |
|---|
| 143 | /// \ingroup galgs |
|---|
| 144 | template <typename Graph, |
|---|
| 145 | typename ReachedMap=typename Graph::template NodeMap<bool>, |
|---|
| 146 | typename PredMap |
|---|
| 147 | =typename Graph::template NodeMap<typename Graph::Edge>, |
|---|
| 148 | typename DistMap=typename Graph::template NodeMap<int> > |
|---|
| 149 | class Bfs : public BfsIterator<Graph, ReachedMap> { |
|---|
| 150 | typedef BfsIterator<Graph, ReachedMap> Parent; |
|---|
| 151 | protected: |
|---|
| 152 | typedef typename Parent::Node Node; |
|---|
| 153 | PredMap& pred; |
|---|
| 154 | DistMap& dist; |
|---|
| 155 | public: |
|---|
| 156 | /// The algorithm will search in a bfs order for |
|---|
| 157 | /// the nodes which are \c false initially. |
|---|
| 158 | /// The constructor makes no initial changes on the maps. |
|---|
| 159 | Bfs<Graph, ReachedMap, PredMap, DistMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred, DistMap& _dist) : |
|---|
| 160 | BfsIterator<Graph, ReachedMap>(_graph, _reached), |
|---|
| 161 | pred(_pred), dist(_dist) { } |
|---|
| 162 | /// \c s is marked to be reached and pushed in the bfs queue. |
|---|
| 163 | /// If the queue is empty, then the first out-edge is processed. |
|---|
| 164 | /// If \c s was not marked previously, then |
|---|
| 165 | /// in addition its pred is set to be \c INVALID, and dist to \c 0. |
|---|
| 166 | /// if \c s was marked previuosly, then it is simply pushed. |
|---|
| 167 | Bfs<Graph, ReachedMap, PredMap, DistMap>& push(Node s) { |
|---|
| 168 | if (this->reached[s]) { |
|---|
| 169 | Parent::pushAndSetReached(s); |
|---|
| 170 | } else { |
|---|
| 171 | Parent::pushAndSetReached(s); |
|---|
| 172 | pred.set(s, INVALID); |
|---|
| 173 | dist.set(s, 0); |
|---|
| 174 | } |
|---|
| 175 | return *this; |
|---|
| 176 | } |
|---|
| 177 | /// A bfs is processed from \c s. |
|---|
| 178 | Bfs<Graph, ReachedMap, PredMap, DistMap>& run(Node s) { |
|---|
| 179 | push(s); |
|---|
| 180 | while (!this->finished()) this->operator++(); |
|---|
| 181 | return *this; |
|---|
| 182 | } |
|---|
| 183 | /// Beside the bfs iteration, \c pred and \dist are saved in a |
|---|
| 184 | /// newly reached node. |
|---|
| 185 | Bfs<Graph, ReachedMap, PredMap, DistMap>& operator++() { |
|---|
| 186 | Parent::operator++(); |
|---|
| 187 | if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) |
|---|
| 188 | { |
|---|
| 189 | pred.set(this->target(), this->actual_edge); |
|---|
| 190 | dist.set(this->target(), dist[this->source()]); |
|---|
| 191 | } |
|---|
| 192 | return *this; |
|---|
| 193 | } |
|---|
| 194 | /// Guess what? |
|---|
| 195 | /// \deprecated |
|---|
| 196 | const PredMap& getPredMap() const { return pred; } |
|---|
| 197 | /// Guess what? |
|---|
| 198 | /// \deprecated |
|---|
| 199 | const DistMap& getDistMap() const { return dist; } |
|---|
| 200 | }; |
|---|
| 201 | |
|---|
| 202 | /// Dfs searches for the nodes wich are not marked in |
|---|
| 203 | /// \c reached_map |
|---|
| 204 | /// Reached have to be a read-write bool Node-map. |
|---|
| 205 | /// \ingroup galgs |
|---|
| 206 | template <typename Graph, /*typename OutEdgeIt,*/ |
|---|
| 207 | typename ReachedMap/*=typename Graph::NodeMap<bool>*/ > |
|---|
| 208 | class DfsIterator { |
|---|
| 209 | protected: |
|---|
| 210 | typedef typename Graph::Node Node; |
|---|
| 211 | typedef typename Graph::Edge Edge; |
|---|
| 212 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
|---|
| 213 | const Graph* graph; |
|---|
| 214 | std::stack<OutEdgeIt> dfs_stack; |
|---|
| 215 | bool b_node_newly_reached; |
|---|
| 216 | Edge actual_edge; |
|---|
| 217 | Node actual_node; |
|---|
| 218 | ReachedMap& reached; |
|---|
| 219 | bool own_reached_map; |
|---|
| 220 | public: |
|---|
| 221 | /// In that constructor \c _reached have to be a reference |
|---|
| 222 | /// for a bool node-map. The algorithm will search in a dfs order for |
|---|
| 223 | /// the nodes which are \c false initially |
|---|
| 224 | DfsIterator(const Graph& _graph, ReachedMap& _reached) : |
|---|
| 225 | graph(&_graph), reached(_reached), |
|---|
| 226 | own_reached_map(false) { } |
|---|
| 227 | /// The same as above, but the map of reached nodes is |
|---|
| 228 | /// constructed dynamically |
|---|
| 229 | /// to everywhere false. |
|---|
| 230 | DfsIterator(const Graph& _graph) : |
|---|
| 231 | graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), |
|---|
| 232 | own_reached_map(true) { } |
|---|
| 233 | ~DfsIterator() { if (own_reached_map) delete &reached; } |
|---|
| 234 | /// This method markes s reached and first out-edge is processed. |
|---|
| 235 | DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& pushAndSetReached(Node s) { |
|---|
| 236 | actual_node=s; |
|---|
| 237 | reached.set(s, true); |
|---|
| 238 | OutEdgeIt e(*graph, s); |
|---|
| 239 | //graph->first(e, s); |
|---|
| 240 | dfs_stack.push(e); |
|---|
| 241 | return *this; |
|---|
| 242 | } |
|---|
| 243 | /// As \c DfsIterator<Graph, ReachedMap> works as an edge-iterator, |
|---|
| 244 | /// its \c operator++() iterates on the edges in a dfs order. |
|---|
| 245 | DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& |
|---|
| 246 | operator++() { |
|---|
| 247 | actual_edge=dfs_stack.top(); |
|---|
| 248 | if (actual_edge!=INVALID/*.valid()*/) { |
|---|
| 249 | Node w=graph->target(actual_edge); |
|---|
| 250 | actual_node=w; |
|---|
| 251 | if (!reached[w]) { |
|---|
| 252 | OutEdgeIt e(*graph, w); |
|---|
| 253 | //graph->first(e, w); |
|---|
| 254 | dfs_stack.push(e); |
|---|
| 255 | reached.set(w, true); |
|---|
| 256 | b_node_newly_reached=true; |
|---|
| 257 | } else { |
|---|
| 258 | actual_node=graph->source(actual_edge); |
|---|
| 259 | ++dfs_stack.top(); |
|---|
| 260 | b_node_newly_reached=false; |
|---|
| 261 | } |
|---|
| 262 | } else { |
|---|
| 263 | //actual_node=G.aNode(dfs_stack.top()); |
|---|
| 264 | dfs_stack.pop(); |
|---|
| 265 | } |
|---|
| 266 | return *this; |
|---|
| 267 | } |
|---|
| 268 | /// Returns true iff the algorithm is finished. |
|---|
| 269 | bool finished() const { return dfs_stack.empty(); } |
|---|
| 270 | /// The conversion operator makes for converting the bfs-iterator |
|---|
| 271 | /// to an \c out-edge-iterator. |
|---|
| 272 | ///\bug Edge have to be in LEMON 0.2 |
|---|
| 273 | operator Edge() const { return actual_edge; } |
|---|
| 274 | /// Returns if b-node has been reached just now. |
|---|
| 275 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
|---|
| 276 | /// Returns if a-node is examined. |
|---|
| 277 | bool isANodeExamined() const { return actual_edge==INVALID; } |
|---|
| 278 | /// Returns a-node of the actual edge, so does if the edge is invalid. |
|---|
| 279 | Node source() const { return actual_node; /*FIXME*/} |
|---|
| 280 | /// Returns b-node of the actual edge. |
|---|
| 281 | /// \pre The actual edge have to be valid. |
|---|
| 282 | Node target() const { return graph->target(actual_edge); } |
|---|
| 283 | /// Guess what? |
|---|
| 284 | /// \deprecated |
|---|
| 285 | const ReachedMap& getReachedMap() const { return reached; } |
|---|
| 286 | /// Guess what? |
|---|
| 287 | /// \deprecated |
|---|
| 288 | const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; } |
|---|
| 289 | }; |
|---|
| 290 | |
|---|
| 291 | /// Dfs searches for the nodes wich are not marked in |
|---|
| 292 | /// \c reached_map |
|---|
| 293 | /// Reached is a read-write bool node-map, |
|---|
| 294 | /// Pred is a write node-map, have to be. |
|---|
| 295 | /// \ingroup galgs |
|---|
| 296 | template <typename Graph, |
|---|
| 297 | typename ReachedMap=typename Graph::template NodeMap<bool>, |
|---|
| 298 | typename PredMap |
|---|
| 299 | =typename Graph::template NodeMap<typename Graph::Edge> > |
|---|
| 300 | class Dfs : public DfsIterator<Graph, ReachedMap> { |
|---|
| 301 | typedef DfsIterator<Graph, ReachedMap> Parent; |
|---|
| 302 | protected: |
|---|
| 303 | typedef typename Parent::Node Node; |
|---|
| 304 | PredMap& pred; |
|---|
| 305 | public: |
|---|
| 306 | /// The algorithm will search in a dfs order for |
|---|
| 307 | /// the nodes which are \c false initially. |
|---|
| 308 | /// The constructor makes no initial changes on the maps. |
|---|
| 309 | Dfs<Graph, ReachedMap, PredMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred) : DfsIterator<Graph, ReachedMap>(_graph, _reached), pred(_pred) { } |
|---|
| 310 | /// \c s is marked to be reached and pushed in the bfs queue. |
|---|
| 311 | /// If the queue is empty, then the first out-edge is processed. |
|---|
| 312 | /// If \c s was not marked previously, then |
|---|
| 313 | /// in addition its pred is set to be \c INVALID. |
|---|
| 314 | /// if \c s was marked previuosly, then it is simply pushed. |
|---|
| 315 | Dfs<Graph, ReachedMap, PredMap>& push(Node s) { |
|---|
| 316 | if (this->reached[s]) { |
|---|
| 317 | Parent::pushAndSetReached(s); |
|---|
| 318 | } else { |
|---|
| 319 | Parent::pushAndSetReached(s); |
|---|
| 320 | pred.set(s, INVALID); |
|---|
| 321 | } |
|---|
| 322 | return *this; |
|---|
| 323 | } |
|---|
| 324 | /// A bfs is processed from \c s. |
|---|
| 325 | Dfs<Graph, ReachedMap, PredMap>& run(Node s) { |
|---|
| 326 | push(s); |
|---|
| 327 | while (!this->finished()) this->operator++(); |
|---|
| 328 | return *this; |
|---|
| 329 | } |
|---|
| 330 | /// Beside the dfs iteration, \c pred is saved in a |
|---|
| 331 | /// newly reached node. |
|---|
| 332 | Dfs<Graph, ReachedMap, PredMap>& operator++() { |
|---|
| 333 | Parent::operator++(); |
|---|
| 334 | if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) |
|---|
| 335 | { |
|---|
| 336 | pred.set(this->target(), this->actual_edge); |
|---|
| 337 | } |
|---|
| 338 | return *this; |
|---|
| 339 | } |
|---|
| 340 | /// Guess what? |
|---|
| 341 | /// \deprecated |
|---|
| 342 | const PredMap& getPredMap() const { return pred; } |
|---|
| 343 | }; |
|---|
| 344 | |
|---|
| 345 | |
|---|
| 346 | } // namespace lemon |
|---|
| 347 | |
|---|
| 348 | #endif //LEMON_BFS_DFS_H |
|---|