1 | // -*- c++ -*- |
---|
2 | #ifndef HUGO_BFS_DFS_MISC_H |
---|
3 | #define HUGO_BFS_DFS_MISC_H |
---|
4 | |
---|
5 | /// \ingroup galgs |
---|
6 | /// \file |
---|
7 | /// \brief Miscellaneous algorithms using bfs and dfs. |
---|
8 | /// |
---|
9 | /// This file contains several algorithms using bfs and dfs. |
---|
10 | /// |
---|
11 | // ///\author Marton Makai |
---|
12 | |
---|
13 | #include <bfs_dfs.h> |
---|
14 | #include <hugo/for_each_macros.h> |
---|
15 | |
---|
16 | namespace hugo { |
---|
17 | |
---|
18 | /// This function eats a read-write \c BoolMap& bool_map, |
---|
19 | /// which have to work well up |
---|
20 | /// to its \c set and \c operator[]() method. Thus we have to deal |
---|
21 | /// very carefully with an uninitialized \c IterableBoolMap. |
---|
22 | /// \ingroup galgs |
---|
23 | template<typename Graph, typename BoolMap> |
---|
24 | bool isBipartite(const Graph& g, BoolMap& bool_map) { |
---|
25 | typedef typename Graph::template NodeMap<bool> ReachedMap; |
---|
26 | ReachedMap reached(g/*, false*/); |
---|
27 | BfsIterator<Graph, ReachedMap> bfs(g, reached); |
---|
28 | FOR_EACH_LOC(typename Graph::NodeIt, n, g) { |
---|
29 | if (!reached[n]) { |
---|
30 | bfs.pushAndSetReached(n); |
---|
31 | bool_map.set(n, false); |
---|
32 | while (!bfs.finished()) { |
---|
33 | if (bfs.isBNodeNewlyReached()) { |
---|
34 | bool_map.set(bfs.bNode())=!bfs.aNode(); |
---|
35 | } else { |
---|
36 | if (bool_map[bfs.bNode()]==bool_map[bfs.aNode()]) { |
---|
37 | return false; |
---|
38 | } |
---|
39 | } |
---|
40 | ++bfs; |
---|
41 | } |
---|
42 | } |
---|
43 | } |
---|
44 | |
---|
45 | return true; |
---|
46 | } |
---|
47 | |
---|
48 | /// experimental topsort, |
---|
49 | /// I think the final version will work as an iterator |
---|
50 | /// if the graph is not a acyclic, the na pre-topological order is obtained |
---|
51 | /// (see Schrijver's book). |
---|
52 | /// PredMap have to be a writtable node-map. |
---|
53 | /// If the graph is directed and not acyclic, |
---|
54 | /// then going back from the returned node via the pred information, a |
---|
55 | /// cycle is obtained. |
---|
56 | /// \ingroup galgs |
---|
57 | template<typename Graph, typename PredMap> |
---|
58 | typename Graph::Node |
---|
59 | topSort(const Graph& g, std::list<typename Graph::Node>& l, |
---|
60 | PredMap& pred) { |
---|
61 | l.clear(); |
---|
62 | typedef typename Graph::template NodeMap<bool> ReachedMap; |
---|
63 | typedef typename Graph::template NodeMap<bool> ExaminedMap; |
---|
64 | ReachedMap reached(g/*, false*/); |
---|
65 | ExaminedMap examined(g/*, false*/); |
---|
66 | DfsIterator<Graph, ReachedMap> dfs(g, reached); |
---|
67 | FOR_EACH_LOC(typename Graph::NodeIt, n, g) { |
---|
68 | if (!reached[n]) { |
---|
69 | dfs.pushAndSetReached(n); |
---|
70 | pred.set(n, INVALID); |
---|
71 | while (!dfs.finished()) { |
---|
72 | ++dfs; |
---|
73 | if (dfs.isBNodeNewlyReached()) { |
---|
74 | ///\bug hugo 0.2-ben Edge kell |
---|
75 | pred.set(dfs.aNode(), typename Graph::OutEdgeIt(dfs)); |
---|
76 | } else { |
---|
77 | ///\bug ugyanaz |
---|
78 | if (g.valid(typename Graph::OutEdgeIt(dfs)) && |
---|
79 | !examined[dfs.bNode()]) { |
---|
80 | ///\bug hugo 0.2-ben Edge kell |
---|
81 | pred.set(dfs.bNode(), typename Graph::OutEdgeIt(dfs)); |
---|
82 | return dfs.aNode(); |
---|
83 | } |
---|
84 | } |
---|
85 | if (dfs.isANodeExamined()) { |
---|
86 | l.push_back(dfs.aNode()); |
---|
87 | examined.set(dfs.aNode(), true); |
---|
88 | } |
---|
89 | } |
---|
90 | } |
---|
91 | } |
---|
92 | return INVALID; |
---|
93 | } |
---|
94 | |
---|
95 | } //namespace hugo |
---|
96 | |
---|
97 | #endif //HUGO_BFS_DFS_MISC_H |
---|