1 | // -*- c++ -*- |
---|
2 | #ifndef HUGO_BFS_ITERATOR_H |
---|
3 | #define HUGO_BFS_ITERATOR_H |
---|
4 | |
---|
5 | #include <queue> |
---|
6 | #include <stack> |
---|
7 | #include <utility> |
---|
8 | |
---|
9 | #include <hugo/invalid.h> |
---|
10 | |
---|
11 | namespace hugo { |
---|
12 | |
---|
13 | template <typename Graph, /*typename OutEdgeIt,*/ |
---|
14 | typename ReachedMap/*=typename Graph::NodeMap<bool>*/ > |
---|
15 | class BfsIterator { |
---|
16 | protected: |
---|
17 | typedef typename Graph::Node Node; |
---|
18 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
19 | const Graph* graph; |
---|
20 | std::queue<Node> bfs_queue; |
---|
21 | ReachedMap& reached; |
---|
22 | bool b_node_newly_reached; |
---|
23 | OutEdgeIt actual_edge; |
---|
24 | bool own_reached_map; |
---|
25 | public: |
---|
26 | BfsIterator(const Graph& _graph, ReachedMap& _reached) : |
---|
27 | graph(&_graph), reached(_reached), |
---|
28 | own_reached_map(false) { } |
---|
29 | BfsIterator(const Graph& _graph) : |
---|
30 | graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), |
---|
31 | own_reached_map(true) { } |
---|
32 | ~BfsIterator() { if (own_reached_map) delete &reached; } |
---|
33 | /// This method markes s reached. |
---|
34 | /// If the queue is empty, then s is pushed in the bfs queue |
---|
35 | /// and the first OutEdgeIt is processed. |
---|
36 | /// If the queue is not empty, then s is simply pushed. |
---|
37 | void pushAndSetReached(Node s) { |
---|
38 | reached.set(s, true); |
---|
39 | if (bfs_queue.empty()) { |
---|
40 | bfs_queue.push(s); |
---|
41 | graph->first(actual_edge, s); |
---|
42 | if (graph->valid(actual_edge)) { |
---|
43 | Node w=graph->bNode(actual_edge); |
---|
44 | if (!reached[w]) { |
---|
45 | bfs_queue.push(w); |
---|
46 | reached.set(w, true); |
---|
47 | b_node_newly_reached=true; |
---|
48 | } else { |
---|
49 | b_node_newly_reached=false; |
---|
50 | } |
---|
51 | } |
---|
52 | } else { |
---|
53 | bfs_queue.push(s); |
---|
54 | } |
---|
55 | } |
---|
56 | /// As \c BfsIterator<Graph, ReachedMap> works as an edge-iterator, |
---|
57 | /// its \c operator++() iterates on the edges in a bfs order. |
---|
58 | BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& |
---|
59 | operator++() { |
---|
60 | if (graph->valid(actual_edge)) { |
---|
61 | graph->next(actual_edge); |
---|
62 | if (graph->valid(actual_edge)) { |
---|
63 | Node w=graph->bNode(actual_edge); |
---|
64 | if (!reached[w]) { |
---|
65 | bfs_queue.push(w); |
---|
66 | reached.set(w, true); |
---|
67 | b_node_newly_reached=true; |
---|
68 | } else { |
---|
69 | b_node_newly_reached=false; |
---|
70 | } |
---|
71 | } |
---|
72 | } else { |
---|
73 | bfs_queue.pop(); |
---|
74 | if (!bfs_queue.empty()) { |
---|
75 | graph->first(actual_edge, bfs_queue.front()); |
---|
76 | if (graph->valid(actual_edge)) { |
---|
77 | Node w=graph->bNode(actual_edge); |
---|
78 | if (!reached[w]) { |
---|
79 | bfs_queue.push(w); |
---|
80 | reached.set(w, true); |
---|
81 | b_node_newly_reached=true; |
---|
82 | } else { |
---|
83 | b_node_newly_reached=false; |
---|
84 | } |
---|
85 | } |
---|
86 | } |
---|
87 | } |
---|
88 | return *this; |
---|
89 | } |
---|
90 | bool finished() const { return bfs_queue.empty(); } |
---|
91 | /// The conversion operator makes for converting the bfs-iterator |
---|
92 | /// to an \c out-edge-iterator. |
---|
93 | operator OutEdgeIt() const { return actual_edge; } |
---|
94 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
---|
95 | bool isANodeExamined() const { return !(graph->valid(actual_edge)); } |
---|
96 | Node aNode() const { return bfs_queue.front(); } |
---|
97 | Node bNode() const { return graph->bNode(actual_edge); } |
---|
98 | const ReachedMap& getReachedMap() const { return reached; } |
---|
99 | const std::queue<Node>& getBfsQueue() const { return bfs_queue; } |
---|
100 | }; |
---|
101 | |
---|
102 | /// Bfs searches from s for the nodes wich are not marked in |
---|
103 | /// \c reached_map |
---|
104 | /// Reached is a read-write bool-map, Pred is a write-nodemap |
---|
105 | /// and dist is an rw-nodemap, have to be. |
---|
106 | template <typename Graph, |
---|
107 | typename ReachedMap=typename Graph::template NodeMap<bool>, |
---|
108 | typename PredMap |
---|
109 | =typename Graph::template NodeMap<typename Graph::Edge>, |
---|
110 | typename DistMap=typename Graph::template NodeMap<int> > |
---|
111 | class Bfs : public BfsIterator<Graph, ReachedMap> { |
---|
112 | typedef BfsIterator<Graph, ReachedMap> Parent; |
---|
113 | protected: |
---|
114 | typedef typename Parent::Node Node; |
---|
115 | PredMap& pred; |
---|
116 | DistMap& dist; |
---|
117 | public: |
---|
118 | Bfs<Graph, ReachedMap, PredMap, DistMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred, DistMap& _dist) : BfsIterator<Graph, ReachedMap>(_graph, _reached), pred(&_pred), dist(&_dist) { } |
---|
119 | /// s is marked to be reached and pushed in the bfs queue. |
---|
120 | /// If the queue is empty, then the first out-edge is processed. |
---|
121 | /// If s was not marked previously, then |
---|
122 | /// in addition its pred is set to be INVALID, and dist to 0. |
---|
123 | /// if s was marked previuosly, then it is simply pushed. |
---|
124 | void push(Node s) { |
---|
125 | if (this->reached[s]) { |
---|
126 | Parent::pushAndSetReached(s); |
---|
127 | } else { |
---|
128 | Parent::pushAndSetReached(s); |
---|
129 | pred.set(s, INVALID); |
---|
130 | dist.set(s, 0); |
---|
131 | } |
---|
132 | } |
---|
133 | /// A bfs is processed from s. |
---|
134 | void run(Node s) { |
---|
135 | push(s); |
---|
136 | while (!this->finished()) this->operator++(); |
---|
137 | } |
---|
138 | Bfs<Graph, ReachedMap, PredMap, DistMap> operator++() { |
---|
139 | Parent::operator++(); |
---|
140 | if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) |
---|
141 | { |
---|
142 | pred.set(this->bNode(), this->actual_edge); |
---|
143 | dist.set(this->bNode(), dist[this->aNode()]); |
---|
144 | } |
---|
145 | return *this; |
---|
146 | } |
---|
147 | const PredMap& getPredMap() const { return pred; } |
---|
148 | const DistMap& getDistMap() const { return dist; } |
---|
149 | }; |
---|
150 | |
---|
151 | template <typename Graph, /*typename OutEdgeIt,*/ |
---|
152 | typename ReachedMap/*=typename Graph::NodeMap<bool>*/ > |
---|
153 | class DfsIterator { |
---|
154 | protected: |
---|
155 | typedef typename Graph::Node Node; |
---|
156 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
157 | const Graph* graph; |
---|
158 | std::stack<OutEdgeIt> dfs_stack; |
---|
159 | bool b_node_newly_reached; |
---|
160 | OutEdgeIt actual_edge; |
---|
161 | Node actual_node; |
---|
162 | ReachedMap& reached; |
---|
163 | bool own_reached_map; |
---|
164 | public: |
---|
165 | DfsIterator(const Graph& _graph, ReachedMap& _reached) : |
---|
166 | graph(&_graph), reached(_reached), |
---|
167 | own_reached_map(false) { } |
---|
168 | DfsIterator(const Graph& _graph) : |
---|
169 | graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), |
---|
170 | own_reached_map(true) { } |
---|
171 | ~DfsIterator() { if (own_reached_map) delete &reached; } |
---|
172 | void pushAndSetReached(Node s) { |
---|
173 | actual_node=s; |
---|
174 | reached.set(s, true); |
---|
175 | OutEdgeIt e; |
---|
176 | graph->first(e, s); |
---|
177 | dfs_stack.push(e); |
---|
178 | } |
---|
179 | DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& |
---|
180 | operator++() { |
---|
181 | actual_edge=dfs_stack.top(); |
---|
182 | //actual_node=G.aNode(actual_edge); |
---|
183 | if (graph->valid(actual_edge)/*.valid()*/) { |
---|
184 | Node w=graph->bNode(actual_edge); |
---|
185 | actual_node=w; |
---|
186 | if (!reached[w]) { |
---|
187 | OutEdgeIt e; |
---|
188 | graph->first(e, w); |
---|
189 | dfs_stack.push(e); |
---|
190 | reached.set(w, true); |
---|
191 | b_node_newly_reached=true; |
---|
192 | } else { |
---|
193 | actual_node=graph->aNode(actual_edge); |
---|
194 | graph->next(dfs_stack.top()); |
---|
195 | b_node_newly_reached=false; |
---|
196 | } |
---|
197 | } else { |
---|
198 | //actual_node=G.aNode(dfs_stack.top()); |
---|
199 | dfs_stack.pop(); |
---|
200 | } |
---|
201 | return *this; |
---|
202 | } |
---|
203 | bool finished() const { return dfs_stack.empty(); } |
---|
204 | operator OutEdgeIt() const { return actual_edge; } |
---|
205 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
---|
206 | bool isANodeExamined() const { return !(graph->valid(actual_edge)); } |
---|
207 | Node aNode() const { return actual_node; /*FIXME*/} |
---|
208 | Node bNode() const { return graph->bNode(actual_edge); } |
---|
209 | const ReachedMap& getReachedMap() const { return reached; } |
---|
210 | const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; } |
---|
211 | }; |
---|
212 | |
---|
213 | /// Dfs searches from s for the nodes wich are not marked in |
---|
214 | /// \c reached_map |
---|
215 | /// Reached is a read-write bool-map, Pred is a write-nodemap, have to be. |
---|
216 | template <typename Graph, |
---|
217 | typename ReachedMap=typename Graph::template NodeMap<bool>, |
---|
218 | typename PredMap |
---|
219 | =typename Graph::template NodeMap<typename Graph::Edge> > |
---|
220 | class Dfs : public DfsIterator<Graph, ReachedMap> { |
---|
221 | typedef DfsIterator<Graph, ReachedMap> Parent; |
---|
222 | protected: |
---|
223 | typedef typename Parent::Node Node; |
---|
224 | PredMap& pred; |
---|
225 | public: |
---|
226 | Dfs<Graph, ReachedMap, PredMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred) : DfsIterator<Graph, ReachedMap>(_graph, _reached), pred(&_pred) { } |
---|
227 | /// s is marked to be reached and pushed in the bfs queue. |
---|
228 | /// If the queue is empty, then the first out-edge is processed. |
---|
229 | /// If s was not marked previously, then |
---|
230 | /// in addition its pred is set to be INVALID. |
---|
231 | /// if s was marked previuosly, then it is simply pushed. |
---|
232 | void push(Node s) { |
---|
233 | if (this->reached[s]) { |
---|
234 | Parent::pushAndSetReached(s); |
---|
235 | } else { |
---|
236 | Parent::pushAndSetReached(s); |
---|
237 | pred.set(s, INVALID); |
---|
238 | } |
---|
239 | } |
---|
240 | /// A bfs is processed from s. |
---|
241 | void run(Node s) { |
---|
242 | push(s); |
---|
243 | while (!this->finished()) this->operator++(); |
---|
244 | } |
---|
245 | Dfs<Graph, ReachedMap, PredMap> operator++() { |
---|
246 | Parent::operator++(); |
---|
247 | if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) |
---|
248 | { |
---|
249 | pred.set(this->bNode(), this->actual_edge); |
---|
250 | } |
---|
251 | return *this; |
---|
252 | } |
---|
253 | const PredMap& getPredMap() const { return pred; } |
---|
254 | }; |
---|
255 | |
---|
256 | |
---|
257 | } // namespace hugo |
---|
258 | |
---|
259 | #endif //HUGO_BFS_ITERATOR_H |
---|