COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/work/marci/graph_concept.h @ 613:b5b5c4ae5107

Last change on this file since 613:b5b5c4ae5107 was 334:63703ea7d02f, checked in by marci, 17 years ago

brrr

File size: 14.2 KB
Line 
1// -*- c++ -*-
2#ifndef HUGO_GRAPH_H
3#define HUGO_GRAPH_H
4
5///\file
6///\brief Declaration of GraphSkeleturo.
7
8#include <invalid.h>
9
10/// The namespace of HugoLib
11namespace hugo {
12
13  /// @defgroup empty_graph The GraphSkeleturo class
14  /// @{
15
16  /// An empty graph class.
17 
18  /// This class provides all the common features of a graph structure,
19  /// however completely without implementations and real data structures
20  /// behind the interface.
21  /// All graph algorithms should compile with this class, but it will not
22  /// run properly, of course.
23  ///
24  /// It can be used for checking the interface compatibility,
25  /// or it can serve as a skeleton of a new graph structure.
26  ///
27  /// Also, you will find here the full documentation of a certain graph
28  /// feature, the documentation of a real graph imlementation
29  /// like @ref ListGraph or
30  /// @ref SmartGraph will just refer to this structure.
31  class GraphSkeleturo
32  {
33  public:
34    /// Defalult constructor.
35    GraphSkeleturo() {}
36    ///Copy consructor.
37
38    ///\todo It is not clear, what we expect from a copy constructor.
39    ///E.g. How to assign the nodes/edges to each other? What about maps?
40    GraphSkeleturo(const GraphSkeleturo &G) {}
41
42    /// The base type of the node iterators.
43
44    /// This is the base type of each node iterators,
45    /// thus each kind of node iterator will convert to this.
46    class Node {
47    public:
48      /// @warning The default constructor sets the iterator
49      /// to an undefined value.
50      Node() {}   //FIXME
51      /// Invalid constructor \& conversion.
52
53      /// This constructor initializes the iterator to be invalid.
54      /// \sa Invalid for more details.
55
56      Node(Invalid) {}
57      //Node(const Node &) {}
58
59      /// Two iterators are equal if and only if they point to the
60      /// same object or both are invalid.
61      bool operator==(Node n) const { return true; }
62
63      /// \sa \ref operator==(Node n)
64      ///
65      bool operator!=(Node n) const { return true; }
66
67      bool operator<(Node n) const { return true; }
68    };
69   
70    /// This iterator goes through each node.
71
72    /// This iterator goes through each node.
73    /// Its usage is quite simple, for example you can count the number
74    /// of nodes in graph \c G of type \c Graph like this:
75    /// \code
76    ///int count=0;
77    ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
78    /// \endcode
79    class NodeIt : public Node {
80    public:
81      /// @warning The default constructor sets the iterator
82      /// to an undefined value.
83      NodeIt() {} //FIXME
84      /// Invalid constructor \& conversion.
85
86      /// Initialize the iterator to be invalid
87      /// \sa Invalid for more details.
88      NodeIt(Invalid) {}
89      /// Sets the iterator to the first node of \c G.
90      NodeIt(const GraphSkeleturo &G) {}
91      /// @warning The default constructor sets the iterator
92      /// to an undefined value.
93      NodeIt(const NodeIt &) {}
94    };
95   
96   
97    /// The base type of the edge iterators.
98    class Edge {
99    public:
100      /// @warning The default constructor sets the iterator
101      /// to an undefined value.
102      Edge() {}   //FIXME
103      /// Initialize the iterator to be invalid
104      Edge(Invalid) {}
105      /// Two iterators are equal if and only if they point to the
106      /// same object or both are invalid.
107      bool operator==(Edge n) const { return true; }
108      bool operator!=(Edge n) const { return true; }
109      bool operator<(Edge n) const { return true; }
110    };
111   
112    //  class SymEdgeIt : public Edge {};
113
114    /// This iterator goes through each edge.
115
116    /// This iterator goes through each edge of a graph.
117    /// Its usage is quite simple, for example you can count the number
118    /// of edges in a graph \c G of type \c Graph as follows:
119    /// \code
120    ///int count=0;
121    ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
122    /// \endcode
123    class EdgeIt : public Edge {
124    public:
125      /// @warning The default constructor sets the iterator
126      /// to an undefined value.
127      EdgeIt() {}
128      /// Initialize the iterator to be invalid
129      EdgeIt(Invalid) {}
130      EdgeIt(const GraphSkeleturo &) {}
131    };
132
133    /// First node of the graph.
134
135    /// \post \c i and the return value will be the first node.
136    ///
137    NodeIt &first(NodeIt &i) const { return i;}
138
139    /// The first incoming edge.
140    InEdgeIt &first(InEdgeIt &i, Node n) const { return i;}
141    /// The first outgoing edge.
142    OutEdgeIt &first(OutEdgeIt &i, Node n) const { return i;}
143    //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
144    /// The first edge of the Graph.
145    EdgeIt &first(EdgeIt &i) const { return i;}
146
147//     Node getNext(Node) const {}
148//     InEdgeIt getNext(InEdgeIt) const {}
149//     OutEdgeIt getNext(OutEdgeIt) const {}
150//     //SymEdgeIt getNext(SymEdgeIt) const {}
151//     EdgeIt getNext(EdgeIt) const {}
152
153    /// Go to the next node.
154    NodeIt &next(NodeIt &i) const { return i;}
155    /// Go to the next incoming edge.
156    InEdgeIt &next(InEdgeIt &i) const { return i;}
157    /// Go to the next outgoing edge.
158    OutEdgeIt &next(OutEdgeIt &i) const { return i;}
159    //SymEdgeIt &next(SymEdgeIt &) const {}
160    /// Go to the next edge.
161    EdgeIt &next(EdgeIt &i) const { return i;}
162
163    ///Gives back the head node of an edge.
164    Node head(Edge) const { return INVALID; }
165    ///Gives back the tail node of an edge.
166    Node tail(Edge) const { return INVALID; }
167 
168    //   Node aNode(InEdgeIt) const {}
169    //   Node aNode(OutEdgeIt) const {}
170    //   Node aNode(SymEdgeIt) const {}
171
172    //   Node bNode(InEdgeIt) const {}
173    //   Node bNode(OutEdgeIt) const {}
174    //   Node bNode(SymEdgeIt) const {}
175
176    /// Checks if a node iterator is valid
177
178    ///\todo Maybe, it would be better if iterator converted to
179    ///bool directly, as Jacint prefers.
180    bool valid(const Node&) const { return true;}
181    /// Checks if an edge iterator is valid
182
183    ///\todo Maybe, it would be better if iterator converted to
184    ///bool directly, as Jacint prefers.
185    bool valid(const Edge&) const { return true;}
186
187    ///Gives back the \e id of a node.
188
189    ///\warning Not all graph structures provide this feature.
190    ///
191    int id(const Node&) const { return 0;}
192    ///Gives back the \e id of an edge.
193
194    ///\warning Not all graph structures provide this feature.
195    ///
196    int id(const Edge&) const { return 0;}
197
198    //void setInvalid(Node &) const {};
199    //void setInvalid(Edge &) const {};
200 
201    ///Add a new node to the graph.
202
203    /// \return the new node.
204    ///
205    Node addNode() { return INVALID;}
206    ///Add a new edge to the graph.
207
208    ///Add a new edge to the graph with tail node \c tail
209    ///and head node \c head.
210    ///\return the new edge.
211    Edge addEdge(Node tail, Node head) { return INVALID;}
212   
213    /// Resets the graph.
214
215    /// This function deletes all edges and nodes of the graph.
216    /// It also frees the memory allocated to store them.
217    void clear() {}
218
219    ///Read/write/reference map of the nodes to type \c T.
220
221    ///Read/write/reference map of the nodes to type \c T.
222    /// \sa MemoryMapSkeleturo
223    /// \todo We may need copy constructor
224    /// \todo We may need conversion from other nodetype
225    /// \todo We may need operator=
226    /// \warning Making maps that can handle bool type (NodeMap<bool>)
227    /// needs extra attention!
228
229    template<class T> class NodeMap
230    {
231    public:
232      typedef T ValueType;
233      typedef Node KeyType;
234
235      NodeMap(const GraphSkeleturo &G) {}
236      NodeMap(const GraphSkeleturo &G, T t) {}
237
238      template<typename TT> NodeMap(const NodeMap<TT> &m) {}
239
240      /// Sets the value of a node.
241
242      /// Sets the value associated with node \c i to the value \c t.
243      ///
244      void set(Node i, T t) {}
245      /// Gets the value of a node.
246      T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary
247      T &operator[](Node i) {return *(T*)0;}
248      const T &operator[](Node i) const {return *(T*)0;}
249
250      /// Updates the map if the graph has been changed
251
252      /// \todo Do we need this?
253      ///
254      void update() {}
255      void update(T a) {}   //FIXME: Is it necessary
256    };
257
258    ///Read/write/reference map of the edges to type \c T.
259
260    ///Read/write/reference map of the edges to type \c T.
261    ///It behaves exactly in the same way as \ref NodeMap.
262    /// \sa NodeMap
263    /// \sa MemoryMapSkeleturo
264    /// \todo We may need copy constructor
265    /// \todo We may need conversion from other edgetype
266    /// \todo We may need operator=
267    template<class T> class EdgeMap
268    {
269    public:
270      typedef T ValueType;
271      typedef Edge KeyType;
272
273      EdgeMap(const GraphSkeleturo &G) {}
274      EdgeMap(const GraphSkeleturo &G, T t) {}
275   
276      void set(Edge i, T t) {}
277      T get(Edge i) const {return *(T*)0;}
278      T &operator[](Edge i) {return *(T*)0;}
279   
280      void update() {}
281      void update(T a) {}   //FIXME: Is it necessary
282    };
283  };
284
285  /// An empty eraseable graph class.
286 
287  /// This class provides all the common features of an \e eraseable graph
288  /// structure,
289  /// however completely without implementations and real data structures
290  /// behind the interface.
291  /// All graph algorithms should compile with this class, but it will not
292  /// run properly, of course.
293  ///
294  /// \todo This blabla could be replaced by a sepatate description about
295  /// Skeleturos.
296  ///
297  /// It can be used for checking the interface compatibility,
298  /// or it can serve as a skeleton of a new graph structure.
299  ///
300  /// Also, you will find here the full documentation of a certain graph
301  /// feature, the documentation of a real graph imlementation
302  /// like @ref ListGraph or
303  /// @ref SmartGraph will just refer to this structure.
304  class EraseableGraphSkeleturo : public GraphSkeleturo
305  {
306  public:
307    /// Deletes a node.
308    void erase(Node n) {}
309    /// Deletes an edge.
310    void erase(Edge e) {}
311
312    /// Defalult constructor.
313    GraphSkeleturo() {}
314    ///Copy consructor.
315    GraphSkeleturo(const GraphSkeleturo &G) {}
316  };
317
318  /// An empty out-edge-iterable graph class.
319 
320  /// An empty graph class which provides a function to
321  /// iterate on out-edges of any node.
322  class OutEdgeIterableGraphSkeleturo : public GraphSkeleturo
323  {
324  public:
325
326    /// This iterator goes trough the outgoing edges of a node.
327
328    /// This iterator goes trough the \e outgoing edges of a certain node
329    /// of a graph.
330    /// Its usage is quite simple, for example you can count the number
331    /// of outgoing edges of a node \c n
332    /// in graph \c G of type \c Graph as follows.
333    /// \code
334    ///int count=0;
335    ///for(Graph::OutEdgeIt e(G,n); G.valid(e); G.next(e)) ++count;
336    /// \endcode
337    class OutEdgeIt : public Edge {
338    public:
339      /// @warning The default constructor sets the iterator
340      /// to an undefined value.
341      OutEdgeIt() {}
342      /// Initialize the iterator to be invalid
343      OutEdgeIt(Invalid) {}
344      /// This constructor sets the iterator to first outgoing edge.
345   
346      /// This constructor set the iterator to the first outgoing edge of
347      /// node
348      ///@param n the node
349      ///@param G the graph
350      OutEdgeIt(const GraphSkeleturo & G, Node n) {}
351    };
352  };
353
354  /// An empty in-edge-iterable graph class.
355 
356  /// An empty graph class which provides a function to
357  /// iterate on in-edges of any node.
358  class InEdgeIterableGraphSkeleturo : public GraphSkeleturo
359  {
360  public:
361
362    /// This iterator goes trough the incoming edges of a node.
363
364    /// This iterator goes trough the \e incoming edges of a certain node
365    /// of a graph.
366    /// Its usage is quite simple, for example you can count the number
367    /// of incoming edges of a node \c n
368    /// in graph \c G of type \c Graph as follows.
369    /// \code
370    ///int count=0;
371    ///for(Graph::InEdgeIt e(G,n); G.valid(e); G.next(e)) ++count;
372    /// \endcode
373    class InEdgeIt : public Edge {
374    public:
375      /// @warning The default constructor sets the iterator
376      /// to an undefined value.
377      InEdgeIt() {}
378      /// Initialize the iterator to be invalid
379      InEdgeIt(Invalid) {}
380      /// This constructor sets the iterator to first incomig edge.
381   
382      /// This constructor set the iterator to the first incomig edge of
383      /// node
384      ///@param n the node
385      ///@param G the graph
386      InEdgeIt(const GraphSkeleturo & G, Node n) {}
387    };
388  };
389
390
391  /// An empty node-eraseable graph class.
392 
393  /// An empty graph class which provides a function to
394  /// delete any of its nodes.
395  class NodeEraseableGraphSkeleturo : public GraphSkeleturo
396  {
397  public:
398    /// Deletes a node.
399    void erase(Node n) {}
400  };
401
402  /// An empty edge-eraseable graph class.
403 
404  /// An empty graph class which provides a function to delete any
405  /// of its edges.
406  class EdgeEraseableGraphSkeleturo : public GraphSkeleturo
407  {
408  public:
409    /// Deletes a node.
410    void erase(Edge n) {}
411  };
412
413  /// An empty graph class which provides a function to get the number of its nodes.
414 
415  /// This graph class provides a function for getting the number of its
416  /// nodes.
417  /// Clearly, for physical graph structures it can be expected to have such a
418  /// function. For wrappers or graphs which are given in an implicit way,
419  /// the implementation can be circumstantial, that is why this composes a
420  /// separate concept.
421  class NodeCountingGraphSkeleturo : public GraphSkeleturo
422  {
423  public:
424    /// Returns the number of nodes.
425    int nodeNum() const { return 0;}
426  };
427
428  /// An empty graph class which provides a function to get the number of its edges.
429 
430  /// This graph class provides a function for getting the number of its
431  /// edges.
432  /// Clearly, for physical graph structures it can be expected to have such a
433  /// function. For wrappers or graphs which are given in an implicit way,
434  /// the implementation can be circumstantial, that is why this composes a
435  /// separate concept.
436  class EdgeCountingGraphSkeleturo : public GraphSkeleturo
437  {
438  public:
439    /// Returns the number of edges.
440    int edgeNum() const { return 0;}
441  };
442 
443  /// @}
444
445} //namespace hugo
446
447
448
449// class EmptyBipGraph : public Graph Skeleturo
450// {
451//   class ANode {};
452//   class BNode {};
453
454//   ANode &next(ANode &) {}
455//   BNode &next(BNode &) {}
456
457//   ANode &getFirst(ANode &) const {}
458//   BNode &getFirst(BNode &) const {}
459
460//   enum NodeClass { A = 0, B = 1 };
461//   NodeClass getClass(Node n) {}
462
463// }
464
465#endif // HUGO_GRAPH_H
Note: See TracBrowser for help on using the repository browser.