// -*- c++ -*- #include #include #include #include #include #include #include #include #include #include //#include //#include #include #include #include #include #include #include using std::cin; using std::cout; using std::endl; using namespace lemon; int main() { //for leda graph leda::graph lg; //lg.make_undirected(); typedef LedaGraphWrapper Graph; Graph g(lg); //for UndirSageGraph //typedef UndirSageGraph Graph; //Graph g; typedef Graph::Node Node; typedef Graph::NodeIt NodeIt; typedef Graph::Edge Edge; typedef Graph::EdgeIt EdgeIt; typedef Graph::OutEdgeIt OutEdgeIt; std::vector s_nodes; std::vector t_nodes; int a; cout << "number of nodes in the first color class="; cin >> a; int b; cout << "number of nodes in the second color class="; cin >> b; int m; cout << "number of edges="; cin >> m; int k; cout << "A bipartite graph is a random group graph if the color classes \nA and B are partitiones to A_0, A_1, ..., A_{k-1} and B_0, B_1, ..., B_{k-1} \nas equally as possible \nand the edges from A_i goes to A_{i-1 mod k} and A_{i+1 mod k}.\n"; cout << "number of groups in LEDA random group graph="; cin >> k; cout << endl; leda_list lS; leda_list lT; random_bigraph(lg, a, b, m, lS, lT, k); Graph::NodeMap ref_map(g, -1); IterableBoolMap< Graph::NodeMap > bipartite_map(ref_map); //generating leda random group graph leda_node ln; forall(ln, lS) bipartite_map.insert(ln, false); forall(ln, lT) bipartite_map.insert(ln, true); //making bipartite graph typedef BipartiteGraphWrapper BGW; BGW bgw(g, bipartite_map); //st-wrapper typedef stBipartiteGraphWrapper stGW; stGW stgw(bgw); ConstMap const1map(1); stGW::EdgeMap flow(stgw); Timer ts; ts.reset(); FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0); MaxFlow, stGW::EdgeMap > max_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, flow/*, true*/); max_flow_test.run(); cout << "LEMON max matching algorithm based on preflow." << endl << "Size of matching: " << max_flow_test.flowValue() << endl; cout << "elapsed time: " << ts << endl << endl; ts.reset(); leda_list ml=MAX_CARD_BIPARTITE_MATCHING(lg); cout << "LEDA max matching algorithm." << endl << "Size of matching: " << ml.size() << endl; cout << "elapsed time: " << ts << endl << endl; // ts.reset(); // FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0); // typedef SageGraph MutableGraph; // while (max_flow_test.augmentOnBlockingFlow()) { } // cout << "LEMON max matching algorithm based on blocking flow augmentation." // << endl << "Matching size: " // << max_flow_test.flowValue() << endl; // cout << "elapsed time: " << ts << endl << endl; { SageGraph hg; SageGraph::Node s=hg.addNode(); SageGraph::Node t=hg.addNode(); BGW::NodeMap b_s_nodes(bgw); BGW::NodeMap b_t_nodes(bgw); FOR_EACH_INC_LOC(BGW::ClassNodeIt, n, bgw, BGW::S_CLASS) { b_s_nodes.set(n, hg.addNode()); hg.addEdge(s, b_s_nodes[n]); } FOR_EACH_INC_LOC(BGW::ClassNodeIt, n, bgw, BGW::T_CLASS) { b_t_nodes.set(n, hg.addNode()); hg.addEdge(b_t_nodes[n], t); } FOR_EACH_LOC(BGW::EdgeIt, e, bgw) hg.addEdge(b_s_nodes[bgw.source(e)], b_t_nodes[bgw.target(e)]); ConstMap cm(1); SageGraph::EdgeMap flow(hg); //0 Timer ts; ts.reset(); MaxFlow, SageGraph::EdgeMap > max_flow_test(hg, s, t, cm, flow); max_flow_test.run(); cout << "LEMON max matching algorithm on SageGraph by copying the graph, based on preflow." << endl << "Size of matching: " << max_flow_test.flowValue() << endl; cout << "elapsed time: " << ts << endl << endl; } return 0; }