// -*- c++ -*- #include #include #include #include #include #include #include #include #include #include //#include //#include #include #include //#include #include #include #include #include /** * Inicializalja a veletlenszamgeneratort. * Figyelem, ez nem jo igazi random szamokhoz, * erre ne bizzad a titkaidat! */ void random_init() { unsigned int seed = getpid(); seed |= seed << 15; seed ^= time(0); srand(seed); } /** * Egy veletlen int-et ad vissza 0 es m-1 kozott. */ int random(int m) { return int( double(m) * rand() / (RAND_MAX + 1.0) ); } using namespace hugo; int main() { //for leda graph leda::graph lg; //lg.make_undirected(); typedef LedaGraphWrapper Graph; Graph g(lg); //for UndirListGraph //typedef UndirListGraph Graph; //Graph g; typedef Graph::Node Node; typedef Graph::NodeIt NodeIt; typedef Graph::Edge Edge; typedef Graph::EdgeIt EdgeIt; typedef Graph::OutEdgeIt OutEdgeIt; std::vector s_nodes; std::vector t_nodes; int a; std::cout << "number of nodes in the first color class="; std::cin >> a; int b; std::cout << "number of nodes in the second color class="; std::cin >> b; int m; std::cout << "number of edges="; std::cin >> m; int k; std::cout << "A bipartite graph is a random group graph if the color classes \nA and B are partitiones to A_0, A_1, ..., A_{k-1} and B_0, B_1, ..., B_{k-1} \nas equally as possible \nand the edges from A_i goes to A_{i-1 mod k} and A_{i+1 mod k}.\n"; std::cout << "number of groups in LEDA random group graph="; std::cin >> k; leda_list lS; leda_list lT; random_bigraph(lg, a, b, m, lS, lT, k); // for (int i=0; i ref_map(g, -1); IterableBoolMap< Graph::NodeMap > bipartite_map(ref_map); // for (int i=0; i BGW; BGW bgw(g, bipartite_map); // BGW::NodeMap dbyj(bgw); // BGW::EdgeMap dbyxcj(bgw); typedef stGraphWrapper stGW; stGW stgw(bgw); ConstMap const1map(1); stGW::EdgeMap flow(stgw); Timer ts; FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0); ts.reset(); // stGW::EdgeMap pre_flow(stgw); Preflow, stGW::EdgeMap > pre_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, flow/*, true*/); pre_flow_test.run(); std::cout << "HUGO pre flow value: " << pre_flow_test.flowValue() << std::endl; std::cout << "elapsed time: " << ts << std::endl; // FOR_EACH_LOC(stGW::EdgeIt, e, stgw) { // std::cout << e << ": " << pre_flow[e] << "\n"; // } std::cout << "\n"; ts.reset(); leda_list ml=MAX_CARD_BIPARTITE_MATCHING(lg); // stGW::EdgeMap pre_flow(stgw); //Preflow, stGW::EdgeMap > // pre_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, pre_flow, true); //pre_flow_test.run(); std::cout << "LEDA matching value: " << ml.size() << std::endl; std::cout << "elapsed time: " << ts << std::endl; // FOR_EACH_LOC(stGW::EdgeIt, e, stgw) { // std::cout << e << ": " << pre_flow[e] << "\n"; // } std::cout << "\n"; FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0); ts.reset(); MaxFlow, stGW::EdgeMap > max_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, flow); // while (max_flow_test.augmentOnShortestPath()) { } typedef ListGraph MutableGraph; // while (max_flow_test.augmentOnBlockingFlow1()) { while (max_flow_test.augmentOnBlockingFlow2()) { std::cout << max_flow_test.flowValue() << std::endl; } std::cout << "HUGO blocking flow value: " << max_flow_test.flowValue() << std::endl; std::cout << "elapsed time: " << ts << std::endl; // FOR_EACH_LOC(stGW::EdgeIt, e, stgw) { // std::cout << e << ": " << max_flow[e] << "\n"; // } // std::cout << "\n"; return 0; }