1 | #ifndef BFS_ITERATOR_HH |
---|
2 | #define BFS_ITERATOR_HH |
---|
3 | |
---|
4 | #include <queue> |
---|
5 | #include <stack> |
---|
6 | #include <utility> |
---|
7 | #include <graph_wrapper.h> |
---|
8 | |
---|
9 | namespace hugo { |
---|
10 | |
---|
11 | template <typename Graph> |
---|
12 | struct bfs { |
---|
13 | typedef typename Graph::NodeIt NodeIt; |
---|
14 | typedef typename Graph::EdgeIt EdgeIt; |
---|
15 | typedef typename Graph::EachNodeIt EachNodeIt; |
---|
16 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
17 | Graph& G; |
---|
18 | NodeIt s; |
---|
19 | typename Graph::NodeMap<bool> reached; |
---|
20 | typename Graph::NodeMap<EdgeIt> pred; |
---|
21 | typename Graph::NodeMap<int> dist; |
---|
22 | std::queue<NodeIt> bfs_queue; |
---|
23 | bfs(Graph& _G, NodeIt _s) : G(_G), s(_s), reached(_G), pred(_G), dist(_G) { |
---|
24 | bfs_queue.push(s); |
---|
25 | for(EachNodeIt i=G.template first<EachNodeIt>(); i.valid(); ++i) |
---|
26 | reached.set(i, false); |
---|
27 | reached.set(s, true); |
---|
28 | dist.set(s, 0); |
---|
29 | } |
---|
30 | |
---|
31 | void run() { |
---|
32 | while (!bfs_queue.empty()) { |
---|
33 | NodeIt v=bfs_queue.front(); |
---|
34 | OutEdgeIt e=G.template first<OutEdgeIt>(v); |
---|
35 | bfs_queue.pop(); |
---|
36 | for( ; e.valid(); ++e) { |
---|
37 | NodeIt w=G.bNode(e); |
---|
38 | std::cout << "scan node " << G.id(w) << " from node " << G.id(v) << std::endl; |
---|
39 | if (!reached.get(w)) { |
---|
40 | std::cout << G.id(w) << " is newly reached :-)" << std::endl; |
---|
41 | bfs_queue.push(w); |
---|
42 | dist.set(w, dist.get(v)+1); |
---|
43 | pred.set(w, e); |
---|
44 | reached.set(w, true); |
---|
45 | } else { |
---|
46 | std::cout << G.id(w) << " is already reached" << std::endl; |
---|
47 | } |
---|
48 | } |
---|
49 | } |
---|
50 | } |
---|
51 | }; |
---|
52 | |
---|
53 | template <typename Graph> |
---|
54 | struct bfs_visitor { |
---|
55 | typedef typename Graph::NodeIt NodeIt; |
---|
56 | typedef typename Graph::EdgeIt EdgeIt; |
---|
57 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
58 | Graph& G; |
---|
59 | bfs_visitor(Graph& _G) : G(_G) { } |
---|
60 | void at_previously_reached(OutEdgeIt& e) { |
---|
61 | //NodeIt v=G.aNode(e); |
---|
62 | NodeIt w=G.bNode(e); |
---|
63 | std::cout << G.id(w) << " is already reached" << std::endl; |
---|
64 | } |
---|
65 | void at_newly_reached(OutEdgeIt& e) { |
---|
66 | //NodeIt v=G.aNode(e); |
---|
67 | NodeIt w=G.bNode(e); |
---|
68 | std::cout << G.id(w) << " is newly reached :-)" << std::endl; |
---|
69 | } |
---|
70 | }; |
---|
71 | |
---|
72 | template <typename Graph, typename ReachedMap, typename visitor_type> |
---|
73 | struct bfs_iterator { |
---|
74 | typedef typename Graph::NodeIt NodeIt; |
---|
75 | typedef typename Graph::EdgeIt EdgeIt; |
---|
76 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
77 | Graph& G; |
---|
78 | std::queue<OutEdgeIt>& bfs_queue; |
---|
79 | ReachedMap& reached; |
---|
80 | visitor_type& visitor; |
---|
81 | void process() { |
---|
82 | while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
83 | if (bfs_queue.empty()) return; |
---|
84 | OutEdgeIt e=bfs_queue.front(); |
---|
85 | //NodeIt v=G.aNode(e); |
---|
86 | NodeIt w=G.bNode(e); |
---|
87 | if (!reached.get(w)) { |
---|
88 | visitor.at_newly_reached(e); |
---|
89 | bfs_queue.push(G.template first<OutEdgeIt>(w)); |
---|
90 | reached.set(w, true); |
---|
91 | } else { |
---|
92 | visitor.at_previously_reached(e); |
---|
93 | } |
---|
94 | } |
---|
95 | bfs_iterator(Graph& _G, std::queue<OutEdgeIt>& _bfs_queue, ReachedMap& _reached, visitor_type& _visitor) : G(_G), bfs_queue(_bfs_queue), reached(_reached), visitor(_visitor) { |
---|
96 | //while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
97 | valid(); |
---|
98 | } |
---|
99 | bfs_iterator<Graph, ReachedMap, visitor_type>& operator++() { |
---|
100 | //while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
101 | //if (bfs_queue.empty()) return *this; |
---|
102 | if (!valid()) return *this; |
---|
103 | ++(bfs_queue.front()); |
---|
104 | //while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
105 | valid(); |
---|
106 | return *this; |
---|
107 | } |
---|
108 | //void next() { |
---|
109 | // while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
110 | // if (bfs_queue.empty()) return; |
---|
111 | // ++(bfs_queue.front()); |
---|
112 | // while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
113 | //} |
---|
114 | bool valid() { |
---|
115 | while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
116 | if (bfs_queue.empty()) return false; else return true; |
---|
117 | } |
---|
118 | //bool finished() { |
---|
119 | // while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
120 | // if (bfs_queue.empty()) return true; else return false; |
---|
121 | //} |
---|
122 | operator EdgeIt () { return bfs_queue.front(); } |
---|
123 | |
---|
124 | }; |
---|
125 | |
---|
126 | template <typename Graph, typename ReachedMap> |
---|
127 | struct bfs_iterator1 { |
---|
128 | typedef typename Graph::NodeIt NodeIt; |
---|
129 | typedef typename Graph::EdgeIt EdgeIt; |
---|
130 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
131 | Graph& G; |
---|
132 | std::queue<OutEdgeIt>& bfs_queue; |
---|
133 | ReachedMap& reached; |
---|
134 | bool _newly_reached; |
---|
135 | bfs_iterator1(Graph& _G, std::queue<OutEdgeIt>& _bfs_queue, ReachedMap& _reached) : G(_G), bfs_queue(_bfs_queue), reached(_reached) { |
---|
136 | valid(); |
---|
137 | if (!bfs_queue.empty() && bfs_queue.front().valid()) { |
---|
138 | OutEdgeIt e=bfs_queue.front(); |
---|
139 | NodeIt w=G.bNode(e); |
---|
140 | if (!reached.get(w)) { |
---|
141 | bfs_queue.push(G.template first<OutEdgeIt>(w)); |
---|
142 | reached.set(w, true); |
---|
143 | _newly_reached=true; |
---|
144 | } else { |
---|
145 | _newly_reached=false; |
---|
146 | } |
---|
147 | } |
---|
148 | } |
---|
149 | bfs_iterator1<Graph, ReachedMap>& operator++() { |
---|
150 | if (!valid()) return *this; |
---|
151 | ++(bfs_queue.front()); |
---|
152 | valid(); |
---|
153 | if (!bfs_queue.empty() && bfs_queue.front().valid()) { |
---|
154 | OutEdgeIt e=bfs_queue.front(); |
---|
155 | NodeIt w=G.bNode(e); |
---|
156 | if (!reached.get(w)) { |
---|
157 | bfs_queue.push(G.template first<OutEdgeIt>(w)); |
---|
158 | reached.set(w, true); |
---|
159 | _newly_reached=true; |
---|
160 | } else { |
---|
161 | _newly_reached=false; |
---|
162 | } |
---|
163 | } |
---|
164 | return *this; |
---|
165 | } |
---|
166 | bool valid() { |
---|
167 | while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
168 | if (bfs_queue.empty()) return false; else return true; |
---|
169 | } |
---|
170 | operator OutEdgeIt() { return bfs_queue.front(); } |
---|
171 | //ize |
---|
172 | bool newly_reached() { return _newly_reached; } |
---|
173 | |
---|
174 | }; |
---|
175 | |
---|
176 | template <typename Graph, typename OutEdgeIt, typename ReachedMap> |
---|
177 | struct BfsIterator { |
---|
178 | typedef typename Graph::NodeIt NodeIt; |
---|
179 | Graph& G; |
---|
180 | std::queue<OutEdgeIt>& bfs_queue; |
---|
181 | ReachedMap& reached; |
---|
182 | bool b_node_newly_reached; |
---|
183 | OutEdgeIt actual_edge; |
---|
184 | BfsIterator(Graph& _G, |
---|
185 | std::queue<OutEdgeIt>& _bfs_queue, |
---|
186 | ReachedMap& _reached) : |
---|
187 | G(_G), bfs_queue(_bfs_queue), reached(_reached) { |
---|
188 | actual_edge=bfs_queue.front(); |
---|
189 | if (actual_edge.valid()) { |
---|
190 | NodeIt w=G.bNode(actual_edge); |
---|
191 | if (!reached.get(w)) { |
---|
192 | bfs_queue.push(G.firstOutEdge(w)); |
---|
193 | reached.set(w, true); |
---|
194 | b_node_newly_reached=true; |
---|
195 | } else { |
---|
196 | b_node_newly_reached=false; |
---|
197 | } |
---|
198 | } |
---|
199 | } |
---|
200 | BfsIterator<Graph, OutEdgeIt, ReachedMap>& |
---|
201 | operator++() { |
---|
202 | if (bfs_queue.front().valid()) { |
---|
203 | ++(bfs_queue.front()); |
---|
204 | actual_edge=bfs_queue.front(); |
---|
205 | if (actual_edge.valid()) { |
---|
206 | NodeIt w=G.bNode(actual_edge); |
---|
207 | if (!reached.get(w)) { |
---|
208 | bfs_queue.push(G.firstOutEdge(w)); |
---|
209 | reached.set(w, true); |
---|
210 | b_node_newly_reached=true; |
---|
211 | } else { |
---|
212 | b_node_newly_reached=false; |
---|
213 | } |
---|
214 | } |
---|
215 | } else { |
---|
216 | bfs_queue.pop(); |
---|
217 | actual_edge=bfs_queue.front(); |
---|
218 | if (actual_edge.valid()) { |
---|
219 | NodeIt w=G.bNode(actual_edge); |
---|
220 | if (!reached.get(w)) { |
---|
221 | bfs_queue.push(G.firstOutEdge(w)); |
---|
222 | reached.set(w, true); |
---|
223 | b_node_newly_reached=true; |
---|
224 | } else { |
---|
225 | b_node_newly_reached=false; |
---|
226 | } |
---|
227 | } |
---|
228 | } |
---|
229 | return *this; |
---|
230 | } |
---|
231 | bool finished() { return bfs_queue.empty(); } |
---|
232 | operator OutEdgeIt () { return actual_edge; } |
---|
233 | bool bNodeIsNewlyReached() { return b_node_newly_reached; } |
---|
234 | bool aNodeIsExamined() { return !(actual_edge.valid()); } |
---|
235 | }; |
---|
236 | |
---|
237 | |
---|
238 | template <typename Graph, typename OutEdgeIt, typename ReachedMap> |
---|
239 | struct DfsIterator { |
---|
240 | typedef typename Graph::NodeIt NodeIt; |
---|
241 | Graph& G; |
---|
242 | std::stack<OutEdgeIt>& bfs_queue; |
---|
243 | ReachedMap& reached; |
---|
244 | bool b_node_newly_reached; |
---|
245 | OutEdgeIt actual_edge; |
---|
246 | DfsIterator(Graph& _G, |
---|
247 | std::stack<OutEdgeIt>& _bfs_queue, |
---|
248 | ReachedMap& _reached) : |
---|
249 | G(_G), bfs_queue(_bfs_queue), reached(_reached) { |
---|
250 | actual_edge=bfs_queue.top(); |
---|
251 | if (actual_edge.valid()) { |
---|
252 | NodeIt w=G.bNode(actual_edge); |
---|
253 | if (!reached.get(w)) { |
---|
254 | bfs_queue.push(G.firstOutEdge(w)); |
---|
255 | reached.set(w, true); |
---|
256 | b_node_newly_reached=true; |
---|
257 | } else { |
---|
258 | ++(bfs_queue.top()); |
---|
259 | b_node_newly_reached=false; |
---|
260 | } |
---|
261 | } else { |
---|
262 | bfs_queue.pop(); |
---|
263 | } |
---|
264 | } |
---|
265 | DfsIterator<Graph, OutEdgeIt, ReachedMap>& |
---|
266 | operator++() { |
---|
267 | actual_edge=bfs_queue.top(); |
---|
268 | if (actual_edge.valid()) { |
---|
269 | NodeIt w=G.bNode(actual_edge); |
---|
270 | if (!reached.get(w)) { |
---|
271 | bfs_queue.push(G.firstOutEdge(w)); |
---|
272 | reached.set(w, true); |
---|
273 | b_node_newly_reached=true; |
---|
274 | } else { |
---|
275 | ++(bfs_queue.top()); |
---|
276 | b_node_newly_reached=false; |
---|
277 | } |
---|
278 | } else { |
---|
279 | bfs_queue.pop(); |
---|
280 | } |
---|
281 | return *this; |
---|
282 | } |
---|
283 | bool finished() { return bfs_queue.empty(); } |
---|
284 | operator OutEdgeIt () { return actual_edge; } |
---|
285 | bool bNodeIsNewlyReached() { return b_node_newly_reached; } |
---|
286 | bool aNodeIsExamined() { return !(actual_edge.valid()); } |
---|
287 | }; |
---|
288 | |
---|
289 | template <typename Graph, typename OutEdgeIt, typename ReachedMap> |
---|
290 | struct BfsIterator1 { |
---|
291 | typedef typename Graph::NodeIt NodeIt; |
---|
292 | Graph& G; |
---|
293 | std::queue<OutEdgeIt>& bfs_queue; |
---|
294 | ReachedMap& reached; |
---|
295 | bool b_node_newly_reached; |
---|
296 | OutEdgeIt actual_edge; |
---|
297 | BfsIterator1(Graph& _G, |
---|
298 | std::queue<OutEdgeIt>& _bfs_queue, |
---|
299 | ReachedMap& _reached) : |
---|
300 | G(_G), bfs_queue(_bfs_queue), reached(_reached) { |
---|
301 | actual_edge=bfs_queue.front(); |
---|
302 | if (actual_edge.valid()) { |
---|
303 | NodeIt w=G.bNode(actual_edge); |
---|
304 | if (!reached.get(w)) { |
---|
305 | bfs_queue.push(OutEdgeIt(G, w)); |
---|
306 | reached.set(w, true); |
---|
307 | b_node_newly_reached=true; |
---|
308 | } else { |
---|
309 | b_node_newly_reached=false; |
---|
310 | } |
---|
311 | } |
---|
312 | } |
---|
313 | void next() { |
---|
314 | if (bfs_queue.front().valid()) { |
---|
315 | ++(bfs_queue.front()); |
---|
316 | actual_edge=bfs_queue.front(); |
---|
317 | if (actual_edge.valid()) { |
---|
318 | NodeIt w=G.bNode(actual_edge); |
---|
319 | if (!reached.get(w)) { |
---|
320 | bfs_queue.push(OutEdgeIt(G, w)); |
---|
321 | reached.set(w, true); |
---|
322 | b_node_newly_reached=true; |
---|
323 | } else { |
---|
324 | b_node_newly_reached=false; |
---|
325 | } |
---|
326 | } |
---|
327 | } else { |
---|
328 | bfs_queue.pop(); |
---|
329 | actual_edge=bfs_queue.front(); |
---|
330 | if (actual_edge.valid()) { |
---|
331 | NodeIt w=G.bNode(actual_edge); |
---|
332 | if (!reached.get(w)) { |
---|
333 | bfs_queue.push(OutEdgeIt(G, w)); |
---|
334 | reached.set(w, true); |
---|
335 | b_node_newly_reached=true; |
---|
336 | } else { |
---|
337 | b_node_newly_reached=false; |
---|
338 | } |
---|
339 | } |
---|
340 | } |
---|
341 | //return *this; |
---|
342 | } |
---|
343 | bool finished() { return bfs_queue.empty(); } |
---|
344 | operator OutEdgeIt () { return actual_edge; } |
---|
345 | bool bNodeIsNewlyReached() { return b_node_newly_reached; } |
---|
346 | bool aNodeIsExamined() { return !(actual_edge.valid()); } |
---|
347 | }; |
---|
348 | |
---|
349 | |
---|
350 | template <typename Graph, typename OutEdgeIt, typename ReachedMap> |
---|
351 | struct DfsIterator1 { |
---|
352 | typedef typename Graph::NodeIt NodeIt; |
---|
353 | Graph& G; |
---|
354 | std::stack<OutEdgeIt>& bfs_queue; |
---|
355 | ReachedMap& reached; |
---|
356 | bool b_node_newly_reached; |
---|
357 | OutEdgeIt actual_edge; |
---|
358 | DfsIterator1(Graph& _G, |
---|
359 | std::stack<OutEdgeIt>& _bfs_queue, |
---|
360 | ReachedMap& _reached) : |
---|
361 | G(_G), bfs_queue(_bfs_queue), reached(_reached) { |
---|
362 | //actual_edge=bfs_queue.top(); |
---|
363 | //if (actual_edge.valid()) { |
---|
364 | // NodeIt w=G.bNode(actual_edge); |
---|
365 | //if (!reached.get(w)) { |
---|
366 | // bfs_queue.push(OutEdgeIt(G, w)); |
---|
367 | // reached.set(w, true); |
---|
368 | // b_node_newly_reached=true; |
---|
369 | //} else { |
---|
370 | // ++(bfs_queue.top()); |
---|
371 | // b_node_newly_reached=false; |
---|
372 | //} |
---|
373 | //} else { |
---|
374 | // bfs_queue.pop(); |
---|
375 | //} |
---|
376 | } |
---|
377 | void next() { |
---|
378 | actual_edge=bfs_queue.top(); |
---|
379 | if (actual_edge.valid()) { |
---|
380 | NodeIt w=G.bNode(actual_edge); |
---|
381 | if (!reached.get(w)) { |
---|
382 | bfs_queue.push(OutEdgeIt(G, w)); |
---|
383 | reached.set(w, true); |
---|
384 | b_node_newly_reached=true; |
---|
385 | } else { |
---|
386 | ++(bfs_queue.top()); |
---|
387 | b_node_newly_reached=false; |
---|
388 | } |
---|
389 | } else { |
---|
390 | bfs_queue.pop(); |
---|
391 | } |
---|
392 | //return *this; |
---|
393 | } |
---|
394 | bool finished() { return bfs_queue.empty(); } |
---|
395 | operator OutEdgeIt () { return actual_edge; } |
---|
396 | bool bNodeIsNewlyReached() { return b_node_newly_reached; } |
---|
397 | bool aNodeIsLeaved() { return !(actual_edge.valid()); } |
---|
398 | }; |
---|
399 | |
---|
400 | template <typename Graph, typename OutEdgeIt, typename ReachedMap> |
---|
401 | class BfsIterator2 { |
---|
402 | typedef typename Graph::NodeIt NodeIt; |
---|
403 | const Graph& G; |
---|
404 | std::queue<OutEdgeIt> bfs_queue; |
---|
405 | ReachedMap reached; |
---|
406 | bool b_node_newly_reached; |
---|
407 | OutEdgeIt actual_edge; |
---|
408 | public: |
---|
409 | BfsIterator2(const Graph& _G) : G(_G), reached(G, false) { } |
---|
410 | void pushAndSetReached(NodeIt s) { |
---|
411 | reached.set(s, true); |
---|
412 | if (bfs_queue.empty()) { |
---|
413 | bfs_queue.push(G.template first<OutEdgeIt>(s)); |
---|
414 | actual_edge=bfs_queue.front(); |
---|
415 | if (actual_edge.valid()) { |
---|
416 | NodeIt w=G.bNode(actual_edge); |
---|
417 | if (!reached.get(w)) { |
---|
418 | bfs_queue.push(G.template first<OutEdgeIt>(w)); |
---|
419 | reached.set(w, true); |
---|
420 | b_node_newly_reached=true; |
---|
421 | } else { |
---|
422 | b_node_newly_reached=false; |
---|
423 | } |
---|
424 | } //else { |
---|
425 | //} |
---|
426 | } else { |
---|
427 | bfs_queue.push(G.template first<OutEdgeIt>(s)); |
---|
428 | } |
---|
429 | } |
---|
430 | BfsIterator2<Graph, OutEdgeIt, ReachedMap>& |
---|
431 | operator++() { |
---|
432 | if (bfs_queue.front().valid()) { |
---|
433 | ++(bfs_queue.front()); |
---|
434 | actual_edge=bfs_queue.front(); |
---|
435 | if (actual_edge.valid()) { |
---|
436 | NodeIt w=G.bNode(actual_edge); |
---|
437 | if (!reached.get(w)) { |
---|
438 | bfs_queue.push(G.template first<OutEdgeIt>(w)); |
---|
439 | reached.set(w, true); |
---|
440 | b_node_newly_reached=true; |
---|
441 | } else { |
---|
442 | b_node_newly_reached=false; |
---|
443 | } |
---|
444 | } |
---|
445 | } else { |
---|
446 | bfs_queue.pop(); |
---|
447 | if (!bfs_queue.empty()) { |
---|
448 | actual_edge=bfs_queue.front(); |
---|
449 | if (actual_edge.valid()) { |
---|
450 | NodeIt w=G.bNode(actual_edge); |
---|
451 | if (!reached.get(w)) { |
---|
452 | bfs_queue.push(G.template first<OutEdgeIt>(w)); |
---|
453 | reached.set(w, true); |
---|
454 | b_node_newly_reached=true; |
---|
455 | } else { |
---|
456 | b_node_newly_reached=false; |
---|
457 | } |
---|
458 | } |
---|
459 | } |
---|
460 | } |
---|
461 | return *this; |
---|
462 | } |
---|
463 | bool finished() const { return bfs_queue.empty(); } |
---|
464 | operator OutEdgeIt () const { return actual_edge; } |
---|
465 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
---|
466 | bool isANodeExamined() const { return !(actual_edge.valid()); } |
---|
467 | const ReachedMap& getReachedMap() const { return reached; } |
---|
468 | const std::queue<OutEdgeIt>& getBfsQueue() const { return bfs_queue; } |
---|
469 | }; |
---|
470 | |
---|
471 | |
---|
472 | template <typename Graph, typename OutEdgeIt, typename ReachedMap> |
---|
473 | class BfsIterator3 { |
---|
474 | typedef typename Graph::NodeIt NodeIt; |
---|
475 | const Graph& G; |
---|
476 | std::queue< std::pair<NodeIt, OutEdgeIt> > bfs_queue; |
---|
477 | ReachedMap reached; |
---|
478 | bool b_node_newly_reached; |
---|
479 | OutEdgeIt actual_edge; |
---|
480 | public: |
---|
481 | BfsIterator3(const Graph& _G) : G(_G), reached(G, false) { } |
---|
482 | void pushAndSetReached(NodeIt s) { |
---|
483 | reached.set(s, true); |
---|
484 | if (bfs_queue.empty()) { |
---|
485 | bfs_queue.push(std::pair<NodeIt, OutEdgeIt>(s, G.template first<OutEdgeIt>(s))); |
---|
486 | actual_edge=bfs_queue.front().second; |
---|
487 | if (actual_edge.valid()) { |
---|
488 | NodeIt w=G.bNode(actual_edge); |
---|
489 | if (!reached.get(w)) { |
---|
490 | bfs_queue.push(std::pair<NodeIt, OutEdgeIt>(w, G.template first<OutEdgeIt>(w))); |
---|
491 | reached.set(w, true); |
---|
492 | b_node_newly_reached=true; |
---|
493 | } else { |
---|
494 | b_node_newly_reached=false; |
---|
495 | } |
---|
496 | } //else { |
---|
497 | //} |
---|
498 | } else { |
---|
499 | bfs_queue.push(std::pair<NodeIt, OutEdgeIt>(s, G.template first<OutEdgeIt>(s))); |
---|
500 | } |
---|
501 | } |
---|
502 | BfsIterator3<Graph, OutEdgeIt, ReachedMap>& |
---|
503 | operator++() { |
---|
504 | if (bfs_queue.front().second.valid()) { |
---|
505 | ++(bfs_queue.front().second); |
---|
506 | actual_edge=bfs_queue.front().second; |
---|
507 | if (actual_edge.valid()) { |
---|
508 | NodeIt w=G.bNode(actual_edge); |
---|
509 | if (!reached.get(w)) { |
---|
510 | bfs_queue.push(std::pair<NodeIt, OutEdgeIt>(w, G.template first<OutEdgeIt>(w))); |
---|
511 | reached.set(w, true); |
---|
512 | b_node_newly_reached=true; |
---|
513 | } else { |
---|
514 | b_node_newly_reached=false; |
---|
515 | } |
---|
516 | } |
---|
517 | } else { |
---|
518 | bfs_queue.pop(); |
---|
519 | if (!bfs_queue.empty()) { |
---|
520 | actual_edge=bfs_queue.front().second; |
---|
521 | if (actual_edge.valid()) { |
---|
522 | NodeIt w=G.bNode(actual_edge); |
---|
523 | if (!reached.get(w)) { |
---|
524 | bfs_queue.push(std::pair<NodeIt, OutEdgeIt>(w, G.template first<OutEdgeIt>(w))); |
---|
525 | reached.set(w, true); |
---|
526 | b_node_newly_reached=true; |
---|
527 | } else { |
---|
528 | b_node_newly_reached=false; |
---|
529 | } |
---|
530 | } |
---|
531 | } |
---|
532 | } |
---|
533 | return *this; |
---|
534 | } |
---|
535 | bool finished() const { return bfs_queue.empty(); } |
---|
536 | operator OutEdgeIt () const { return actual_edge; } |
---|
537 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
---|
538 | bool isANodeExamined() const { return !(actual_edge.valid()); } |
---|
539 | NodeIt aNode() const { return bfs_queue.front().first; } |
---|
540 | NodeIt bNode() const { return G.bNode(actual_edge); } |
---|
541 | const ReachedMap& getReachedMap() const { return reached; } |
---|
542 | //const std::queue< std::pair<NodeIt, OutEdgeIt> >& getBfsQueue() const { return bfs_queue; } |
---|
543 | }; |
---|
544 | |
---|
545 | |
---|
546 | template <typename Graph, typename OutEdgeIt, |
---|
547 | typename ReachedMap/*=typename Graph::NodeMap<bool>*/ > |
---|
548 | class BfsIterator4 { |
---|
549 | typedef typename Graph::NodeIt NodeIt; |
---|
550 | const Graph& G; |
---|
551 | std::queue<NodeIt> bfs_queue; |
---|
552 | ReachedMap& reached; |
---|
553 | bool b_node_newly_reached; |
---|
554 | OutEdgeIt actual_edge; |
---|
555 | bool own_reached_map; |
---|
556 | public: |
---|
557 | BfsIterator4(const Graph& _G, ReachedMap& _reached) : |
---|
558 | G(_G), reached(_reached), |
---|
559 | own_reached_map(false) { } |
---|
560 | BfsIterator4(const Graph& _G) : |
---|
561 | G(_G), reached(*(new ReachedMap(G /*, false*/))), |
---|
562 | own_reached_map(true) { } |
---|
563 | ~BfsIterator4() { if (own_reached_map) delete &reached; } |
---|
564 | void pushAndSetReached(NodeIt s) { |
---|
565 | //std::cout << "mimi" << &reached << std::endl; |
---|
566 | reached.set(s, true); |
---|
567 | //std::cout << "mumus" << std::endl; |
---|
568 | if (bfs_queue.empty()) { |
---|
569 | //std::cout << "bibi1" << std::endl; |
---|
570 | bfs_queue.push(s); |
---|
571 | //std::cout << "zizi" << std::endl; |
---|
572 | G.getFirst(actual_edge, s); |
---|
573 | //std::cout << "kiki" << std::endl; |
---|
574 | if (G.valid(actual_edge)/*.valid()*/) { |
---|
575 | NodeIt w=G.bNode(actual_edge); |
---|
576 | if (!reached.get(w)) { |
---|
577 | bfs_queue.push(w); |
---|
578 | reached.set(w, true); |
---|
579 | b_node_newly_reached=true; |
---|
580 | } else { |
---|
581 | b_node_newly_reached=false; |
---|
582 | } |
---|
583 | } |
---|
584 | } else { |
---|
585 | //std::cout << "bibi2" << std::endl; |
---|
586 | bfs_queue.push(s); |
---|
587 | } |
---|
588 | } |
---|
589 | BfsIterator4<Graph, OutEdgeIt, ReachedMap>& |
---|
590 | operator++() { |
---|
591 | if (G.valid(actual_edge)/*.valid()*/) { |
---|
592 | /*++*/G.next(actual_edge); |
---|
593 | if (G.valid(actual_edge)/*.valid()*/) { |
---|
594 | NodeIt w=G.bNode(actual_edge); |
---|
595 | if (!reached.get(w)) { |
---|
596 | bfs_queue.push(w); |
---|
597 | reached.set(w, true); |
---|
598 | b_node_newly_reached=true; |
---|
599 | } else { |
---|
600 | b_node_newly_reached=false; |
---|
601 | } |
---|
602 | } |
---|
603 | } else { |
---|
604 | bfs_queue.pop(); |
---|
605 | if (!bfs_queue.empty()) { |
---|
606 | G.getFirst(actual_edge, bfs_queue.front()); |
---|
607 | if (G.valid(actual_edge)/*.valid()*/) { |
---|
608 | NodeIt w=G.bNode(actual_edge); |
---|
609 | if (!reached.get(w)) { |
---|
610 | bfs_queue.push(w); |
---|
611 | reached.set(w, true); |
---|
612 | b_node_newly_reached=true; |
---|
613 | } else { |
---|
614 | b_node_newly_reached=false; |
---|
615 | } |
---|
616 | } |
---|
617 | } |
---|
618 | } |
---|
619 | return *this; |
---|
620 | } |
---|
621 | bool finished() const { return bfs_queue.empty(); } |
---|
622 | operator OutEdgeIt () const { return actual_edge; } |
---|
623 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
---|
624 | bool isANodeExamined() const { return !(G.valid(actual_edge)/*.valid()*/); } |
---|
625 | NodeIt aNode() const { return bfs_queue.front(); } |
---|
626 | NodeIt bNode() const { return G.bNode(actual_edge); } |
---|
627 | const ReachedMap& getReachedMap() const { return reached; } |
---|
628 | const std::queue<NodeIt>& getBfsQueue() const { return bfs_queue; } |
---|
629 | }; |
---|
630 | |
---|
631 | |
---|
632 | template <typename GraphWrapper, /*typename OutEdgeIt,*/ |
---|
633 | typename ReachedMap/*=typename GraphWrapper::NodeMap<bool>*/ > |
---|
634 | class BfsIterator5 { |
---|
635 | typedef typename GraphWrapper::NodeIt NodeIt; |
---|
636 | typedef typename GraphWrapper::OutEdgeIt OutEdgeIt; |
---|
637 | GraphWrapper G; |
---|
638 | std::queue<NodeIt> bfs_queue; |
---|
639 | ReachedMap& reached; |
---|
640 | bool b_node_newly_reached; |
---|
641 | OutEdgeIt actual_edge; |
---|
642 | bool own_reached_map; |
---|
643 | public: |
---|
644 | BfsIterator5(const GraphWrapper& _G, ReachedMap& _reached) : |
---|
645 | G(_G), reached(_reached), |
---|
646 | own_reached_map(false) { } |
---|
647 | BfsIterator5(const GraphWrapper& _G) : |
---|
648 | G(_G), reached(*(new ReachedMap(G /*, false*/))), |
---|
649 | own_reached_map(true) { } |
---|
650 | // BfsIterator5(const typename GraphWrapper::BaseGraph& _G, |
---|
651 | // ReachedMap& _reached) : |
---|
652 | // G(_G), reached(_reached), |
---|
653 | // own_reached_map(false) { } |
---|
654 | // BfsIterator5(const typename GraphWrapper::BaseGraph& _G) : |
---|
655 | // G(_G), reached(*(new ReachedMap(G /*, false*/))), |
---|
656 | // own_reached_map(true) { } |
---|
657 | ~BfsIterator5() { if (own_reached_map) delete &reached; } |
---|
658 | void pushAndSetReached(NodeIt s) { |
---|
659 | reached.set(s, true); |
---|
660 | if (bfs_queue.empty()) { |
---|
661 | bfs_queue.push(s); |
---|
662 | G.getFirst(actual_edge, s); |
---|
663 | if (G.valid(actual_edge)/*.valid()*/) { |
---|
664 | NodeIt w=G.bNode(actual_edge); |
---|
665 | if (!reached.get(w)) { |
---|
666 | bfs_queue.push(w); |
---|
667 | reached.set(w, true); |
---|
668 | b_node_newly_reached=true; |
---|
669 | } else { |
---|
670 | b_node_newly_reached=false; |
---|
671 | } |
---|
672 | } |
---|
673 | } else { |
---|
674 | bfs_queue.push(s); |
---|
675 | } |
---|
676 | } |
---|
677 | BfsIterator5<GraphWrapper, /*OutEdgeIt,*/ ReachedMap>& |
---|
678 | operator++() { |
---|
679 | if (G.valid(actual_edge)/*.valid()*/) { |
---|
680 | /*++*/G.next(actual_edge); |
---|
681 | if (G.valid(actual_edge)/*.valid()*/) { |
---|
682 | NodeIt w=G.bNode(actual_edge); |
---|
683 | if (!reached.get(w)) { |
---|
684 | bfs_queue.push(w); |
---|
685 | reached.set(w, true); |
---|
686 | b_node_newly_reached=true; |
---|
687 | } else { |
---|
688 | b_node_newly_reached=false; |
---|
689 | } |
---|
690 | } |
---|
691 | } else { |
---|
692 | bfs_queue.pop(); |
---|
693 | if (!bfs_queue.empty()) { |
---|
694 | G.getFirst(actual_edge, bfs_queue.front()); |
---|
695 | if (G.valid(actual_edge)/*.valid()*/) { |
---|
696 | NodeIt w=G.bNode(actual_edge); |
---|
697 | if (!reached.get(w)) { |
---|
698 | bfs_queue.push(w); |
---|
699 | reached.set(w, true); |
---|
700 | b_node_newly_reached=true; |
---|
701 | } else { |
---|
702 | b_node_newly_reached=false; |
---|
703 | } |
---|
704 | } |
---|
705 | } |
---|
706 | } |
---|
707 | return *this; |
---|
708 | } |
---|
709 | bool finished() const { return bfs_queue.empty(); } |
---|
710 | operator OutEdgeIt () const { return actual_edge; } |
---|
711 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
---|
712 | bool isANodeExamined() const { return !(G.valid(actual_edge)/*.valid()*/); } |
---|
713 | NodeIt aNode() const { return bfs_queue.front(); } |
---|
714 | NodeIt bNode() const { return G.bNode(actual_edge); } |
---|
715 | const ReachedMap& getReachedMap() const { return reached; } |
---|
716 | const std::queue<NodeIt>& getBfsQueue() const { return bfs_queue; } |
---|
717 | }; |
---|
718 | |
---|
719 | template <typename Graph, typename OutEdgeIt, |
---|
720 | typename ReachedMap/*=typename Graph::NodeMap<bool>*/ > |
---|
721 | class DfsIterator4 { |
---|
722 | typedef typename Graph::NodeIt NodeIt; |
---|
723 | const Graph& G; |
---|
724 | std::stack<OutEdgeIt> dfs_stack; |
---|
725 | bool b_node_newly_reached; |
---|
726 | OutEdgeIt actual_edge; |
---|
727 | NodeIt actual_node; |
---|
728 | ReachedMap& reached; |
---|
729 | bool own_reached_map; |
---|
730 | public: |
---|
731 | DfsIterator4(const Graph& _G, ReachedMap& _reached) : |
---|
732 | G(_G), reached(_reached), |
---|
733 | own_reached_map(false) { } |
---|
734 | DfsIterator4(const Graph& _G) : |
---|
735 | G(_G), reached(*(new ReachedMap(G /*, false*/))), |
---|
736 | own_reached_map(true) { } |
---|
737 | ~DfsIterator4() { if (own_reached_map) delete &reached; } |
---|
738 | void pushAndSetReached(NodeIt s) { |
---|
739 | actual_node=s; |
---|
740 | reached.set(s, true); |
---|
741 | dfs_stack.push(G.template first<OutEdgeIt>(s)); |
---|
742 | } |
---|
743 | DfsIterator4<Graph, OutEdgeIt, ReachedMap>& |
---|
744 | operator++() { |
---|
745 | actual_edge=dfs_stack.top(); |
---|
746 | //actual_node=G.aNode(actual_edge); |
---|
747 | if (G.valid(actual_edge)/*.valid()*/) { |
---|
748 | NodeIt w=G.bNode(actual_edge); |
---|
749 | actual_node=w; |
---|
750 | if (!reached.get(w)) { |
---|
751 | dfs_stack.push(G.template first<OutEdgeIt>(w)); |
---|
752 | reached.set(w, true); |
---|
753 | b_node_newly_reached=true; |
---|
754 | } else { |
---|
755 | actual_node=G.aNode(actual_edge); |
---|
756 | /*++*/G.next(dfs_stack.top()); |
---|
757 | b_node_newly_reached=false; |
---|
758 | } |
---|
759 | } else { |
---|
760 | //actual_node=G.aNode(dfs_stack.top()); |
---|
761 | dfs_stack.pop(); |
---|
762 | } |
---|
763 | return *this; |
---|
764 | } |
---|
765 | bool finished() const { return dfs_stack.empty(); } |
---|
766 | operator OutEdgeIt () const { return actual_edge; } |
---|
767 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
---|
768 | bool isANodeExamined() const { return !(G.valid(actual_edge)/*.valid()*/); } |
---|
769 | NodeIt aNode() const { return actual_node; /*FIXME*/} |
---|
770 | NodeIt bNode() const { return G.bNode(actual_edge); } |
---|
771 | const ReachedMap& getReachedMap() const { return reached; } |
---|
772 | const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; } |
---|
773 | }; |
---|
774 | |
---|
775 | template <typename GraphWrapper, /*typename OutEdgeIt,*/ |
---|
776 | typename ReachedMap/*=typename GraphWrapper::NodeMap<bool>*/ > |
---|
777 | class DfsIterator5 { |
---|
778 | typedef typename GraphWrapper::NodeIt NodeIt; |
---|
779 | typedef typename GraphWrapper::OutEdgeIt OutEdgeIt; |
---|
780 | GraphWrapper G; |
---|
781 | std::stack<OutEdgeIt> dfs_stack; |
---|
782 | bool b_node_newly_reached; |
---|
783 | OutEdgeIt actual_edge; |
---|
784 | NodeIt actual_node; |
---|
785 | ReachedMap& reached; |
---|
786 | bool own_reached_map; |
---|
787 | public: |
---|
788 | DfsIterator5(const GraphWrapper& _G, ReachedMap& _reached) : |
---|
789 | G(_G), reached(_reached), |
---|
790 | own_reached_map(false) { } |
---|
791 | DfsIterator5(const GraphWrapper& _G) : |
---|
792 | G(_G), reached(*(new ReachedMap(G /*, false*/))), |
---|
793 | own_reached_map(true) { } |
---|
794 | ~DfsIterator5() { if (own_reached_map) delete &reached; } |
---|
795 | void pushAndSetReached(NodeIt s) { |
---|
796 | actual_node=s; |
---|
797 | reached.set(s, true); |
---|
798 | dfs_stack.push(G.template first<OutEdgeIt>(s)); |
---|
799 | } |
---|
800 | DfsIterator5<GraphWrapper, /*OutEdgeIt,*/ ReachedMap>& |
---|
801 | operator++() { |
---|
802 | actual_edge=dfs_stack.top(); |
---|
803 | //actual_node=G.aNode(actual_edge); |
---|
804 | if (G.valid(actual_edge)/*.valid()*/) { |
---|
805 | NodeIt w=G.bNode(actual_edge); |
---|
806 | actual_node=w; |
---|
807 | if (!reached.get(w)) { |
---|
808 | dfs_stack.push(G.template first<OutEdgeIt>(w)); |
---|
809 | reached.set(w, true); |
---|
810 | b_node_newly_reached=true; |
---|
811 | } else { |
---|
812 | actual_node=G.aNode(actual_edge); |
---|
813 | /*++*/G.next(dfs_stack.top()); |
---|
814 | b_node_newly_reached=false; |
---|
815 | } |
---|
816 | } else { |
---|
817 | //actual_node=G.aNode(dfs_stack.top()); |
---|
818 | dfs_stack.pop(); |
---|
819 | } |
---|
820 | return *this; |
---|
821 | } |
---|
822 | bool finished() const { return dfs_stack.empty(); } |
---|
823 | operator OutEdgeIt () const { return actual_edge; } |
---|
824 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
---|
825 | bool isANodeExamined() const { return !(G.valid(actual_edge)/*.valid()*/); } |
---|
826 | NodeIt aNode() const { return actual_node; /*FIXME*/} |
---|
827 | NodeIt bNode() const { return G.bNode(actual_edge); } |
---|
828 | const ReachedMap& getReachedMap() const { return reached; } |
---|
829 | const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; } |
---|
830 | }; |
---|
831 | |
---|
832 | |
---|
833 | |
---|
834 | } // namespace hugo |
---|
835 | |
---|
836 | #endif //BFS_ITERATOR_HH |
---|