#ifndef MARCI_MAX_FLOW_HH #define MARCI_MAX_FLOW_HH #include #include #include #include namespace marci { template class res_graph_type { typedef typename graph_traits::node_iterator node_iterator; typedef typename graph_traits::edge_iterator edge_iterator; typedef typename graph_traits::each_node_iterator each_node_iterator; typedef typename graph_traits::sym_edge_iterator sym_edge_iterator; graph_type& G; edge_property_vector& flow; edge_property_vector& capacity; public: res_graph_type(graph_type& _G, edge_property_vector& _flow, edge_property_vector& _capacity) : G(_G), flow(_flow), capacity(_capacity) { } class res_edge_it { friend class res_graph_type; protected: res_graph_type* resG; sym_edge_iterator sym; public: res_edge_it() { } //bool is_free() { //if (resG->G.a_node(sym)==resG->G.tail(sym)) { // return (resG->flow.get(sym)capacity.get(sym)); //} else { // return (resG->flow.get(sym)>0); //} //} T free() { if (resG->G.a_node(sym)==resG->G.tail(sym)) { return (resG->capacity.get(sym)-resG->flow.get(sym)); } else { return (resG->flow.get(sym)); } } bool is_valid() { return sym.is_valid(); } void augment(T a) { if (resG->G.a_node(sym)==resG->G.tail(sym)) { resG->flow.put(sym, resG->flow.get(sym)+a); } else { resG->flow.put(sym, resG->flow.get(sym)-a); } } }; class res_out_edge_it : public res_edge_it { public: res_out_edge_it() { } res_out_edge_it(res_graph_type& _resG, const node_iterator& v) { resG=&_resG; sym=resG->G.first_sym_edge(v); while( sym.is_valid() && !(free()>0) ) { ++sym; } } res_out_edge_it& operator++() { ++sym; while( sym.is_valid() && !(free()>0) ) { ++sym; } return *this; } }; res_out_edge_it first_out_edge(const node_iterator& v) { return res_out_edge_it(*this, v); } each_node_iterator first_node() { return G.first_node(); } node_iterator tail(const res_edge_it& e) { return G.a_node(e.sym); } node_iterator head(const res_edge_it& e) { return G.b_node(e.sym); } int id(const node_iterator& v) { return G.id(v); } node_iterator invalid_node() { return G.invalid_node(); } res_edge_it invalid_edge() { res_edge_it n; n.sym=G.invalid_sym_edge(); return n; } }; template struct graph_traits< res_graph_type > { typedef typename graph_traits::node_iterator node_iterator; typedef typename res_graph_type::res_edge_it edge_iterator; typedef typename graph_traits::each_node_iterator each_node_iterator; typedef typename res_graph_type::res_out_edge_it out_edge_iterator; }; template struct flow_visitor { typedef typename graph_traits::node_iterator node_iterator; typedef typename graph_traits::edge_iterator edge_iterator; typedef typename graph_traits::each_node_iterator each_node_iterator; typedef typename graph_traits::out_edge_iterator out_edge_iterator; graph_type& G; pred_type& pred; free_type& free; flow_visitor(graph_type& _G, pred_type& _pred, free_type& _free) : G(_G), pred(_pred), free(_free) { } void at_previously_reached(out_edge_iterator& e) { //node_iterator v=G.tail(e); //node_iterator w=G.head(e); //std::cout<"<"< struct max_flow_type { typedef typename graph_traits::node_iterator node_iterator; typedef typename graph_traits::edge_iterator edge_iterator; typedef typename graph_traits::each_node_iterator each_node_iterator; typedef typename graph_traits::out_edge_iterator out_edge_iterator; typedef typename graph_traits::in_edge_iterator in_edge_iterator; graph_type& G; node_iterator s; node_iterator t; edge_property_vector flow; edge_property_vector& capacity; max_flow_type(graph_type& _G, node_iterator _s, node_iterator _t, edge_property_vector& _capacity) : G(_G), s(_s), t(_t), flow(_G), capacity(_capacity) { for(each_node_iterator i=G.first_node(); i.is_valid(); ++i) for(out_edge_iterator j=G.first_out_edge(i); j.is_valid(); ++j) flow.put(j, 0); } void run() { typedef res_graph_type aug_graph_type; aug_graph_type res_graph(G, flow, capacity); typedef std::queue::out_edge_iterator> bfs_queue_type; bfs_queue_type bfs_queue; //bfs_queue.push(res_graph.first_out_edge(s)); typedef node_property_vector reached_type; //reached_type reached(res_graph, false); reached_type reached(res_graph); //reached.put(s, true); typedef node_property_vector::edge_iterator> pred_type; pred_type pred(res_graph); pred.put(s, res_graph.invalid_edge()); typedef node_property_vector free_type; free_type free(res_graph); typedef flow_visitor visitor_type; visitor_type vis(res_graph, pred, free); bfs_iterator< aug_graph_type, reached_type, visitor_type > res_bfs(res_graph, bfs_queue, reached, vis); //for(graph_traits::each_node_iterator i=res_graph.first_node(); i.is_valid(); ++i) { //for(graph_traits::out_edge_iterator j=res_graph.first_out_edge(i); j.is_valid(); ++j) { // std::cout<<"("<"<::each_node_iterator i=res_graph.first_node(); i.is_valid(); ++i) { reached.put(i, false); } reached.put(s, true); //searching for augmenting path while ( /*std::cin>>c &&*/ res_bfs.is_valid() ) { res_bfs.process(); //if (res_graph.head(graph_traits::out_edge_iterator(res_bfs))==t) break; if (res_graph.head(res_bfs)==t) break; //res_bfs.next(); ++res_bfs; } //for (; std::cin>>c && !res_bfs.finished() && res_graph.head(res_bfs.current())!=t; res_bfs.next()) { res_bfs.process(); } if (reached.get(t)) { augment=true; node_iterator n=t; T augment_value=free.get(t); std::cout<<"augmentation: "; while (pred.get(n).is_valid()) { graph_traits::edge_iterator e=pred.get(n); e.augment(augment_value); std::cout<<"("<"<::each_edge_iterator e=G.first_edge(); e.is_valid(); ++e) { std::cout<<"("<"<