1 | // -*- c++ -*- |
---|
2 | #ifndef HUGO_NET_GRAPH_H |
---|
3 | #define HUGO_NET_GRAPH_H |
---|
4 | |
---|
5 | ///\file |
---|
6 | ///\brief Declaration of HierarchyGraph. |
---|
7 | |
---|
8 | #include <hugo/invalid.h> |
---|
9 | #include <hugo/maps.h> |
---|
10 | |
---|
11 | /// The namespace of HugoLib |
---|
12 | namespace hugo { |
---|
13 | |
---|
14 | // @defgroup empty_graph The HierarchyGraph class |
---|
15 | // @{ |
---|
16 | |
---|
17 | /// A graph class in that a simple edge can represent a path. |
---|
18 | |
---|
19 | /// This class provides common features of a graph structure |
---|
20 | /// that represents a network. You can handle with it layers. This |
---|
21 | /// means that a node in one layer can be a complete network in a nother |
---|
22 | /// layer. |
---|
23 | |
---|
24 | template <class Gact, class Gsub> |
---|
25 | class HierarchyGraph |
---|
26 | { |
---|
27 | |
---|
28 | public: |
---|
29 | |
---|
30 | /// The actual layer |
---|
31 | Gact actuallayer; |
---|
32 | |
---|
33 | |
---|
34 | /// Map of subnetworks that are represented by the nodes of this layer |
---|
35 | typename Gact::template NodeMap<Gsub> subnetwork; |
---|
36 | |
---|
37 | |
---|
38 | |
---|
39 | /// Defalult constructor. |
---|
40 | /// We don't need any extra lines, because the actuallayer |
---|
41 | /// variable has run its constructor, when we have created this class |
---|
42 | /// So only the two maps has to be initialised here. |
---|
43 | HierarchyGraph() : subnetwork(actuallayer) |
---|
44 | { |
---|
45 | } |
---|
46 | |
---|
47 | |
---|
48 | ///Copy consructor. |
---|
49 | HierarchyGraph(const HierarchyGraph<Gact, Gsub> & HG ) : actuallayer(HG.actuallayer), subnetwork(actuallayer) |
---|
50 | { |
---|
51 | } |
---|
52 | |
---|
53 | |
---|
54 | /// The base type of the node iterators. |
---|
55 | |
---|
56 | /// This is the base type of each node iterators, |
---|
57 | /// thus each kind of node iterator will convert to this. |
---|
58 | /// The Node type of the HierarchyGraph is the Node type of the actual layer. |
---|
59 | typedef typename Gact::Node Node; |
---|
60 | |
---|
61 | |
---|
62 | /// This iterator goes through each node. |
---|
63 | |
---|
64 | /// Its usage is quite simple, for example you can count the number |
---|
65 | /// of nodes in graph \c G of type \c Graph like this: |
---|
66 | /// \code |
---|
67 | ///int count=0; |
---|
68 | ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++; |
---|
69 | /// \endcode |
---|
70 | /// The NodeIt type of the HierarchyGraph is the NodeIt type of the actual layer. |
---|
71 | typedef typename Gact::NodeIt NodeIt; |
---|
72 | |
---|
73 | |
---|
74 | /// The base type of the edge iterators. |
---|
75 | /// The Edge type of the HierarchyGraph is the Edge type of the actual layer. |
---|
76 | typedef typename Gact::Edge Edge; |
---|
77 | |
---|
78 | |
---|
79 | /// This iterator goes trough the outgoing edges of a node. |
---|
80 | |
---|
81 | /// This iterator goes trough the \e outgoing edges of a certain node |
---|
82 | /// of a graph. |
---|
83 | /// Its usage is quite simple, for example you can count the number |
---|
84 | /// of outgoing edges of a node \c n |
---|
85 | /// in graph \c G of type \c Graph as follows. |
---|
86 | /// \code |
---|
87 | ///int count=0; |
---|
88 | ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++; |
---|
89 | /// \endcode |
---|
90 | /// The OutEdgeIt type of the HierarchyGraph is the OutEdgeIt type of the actual layer. |
---|
91 | typedef typename Gact::OutEdgeIt OutEdgeIt; |
---|
92 | |
---|
93 | |
---|
94 | /// This iterator goes trough the incoming edges of a node. |
---|
95 | |
---|
96 | /// This iterator goes trough the \e incoming edges of a certain node |
---|
97 | /// of a graph. |
---|
98 | /// Its usage is quite simple, for example you can count the number |
---|
99 | /// of outgoing edges of a node \c n |
---|
100 | /// in graph \c G of type \c Graph as follows. |
---|
101 | /// \code |
---|
102 | ///int count=0; |
---|
103 | ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++; |
---|
104 | /// \endcode |
---|
105 | /// The InEdgeIt type of the HierarchyGraph is the InEdgeIt type of the actual layer. |
---|
106 | typedef typename Gact::InEdgeIt InEdgeIt; |
---|
107 | |
---|
108 | |
---|
109 | /// This iterator goes through each edge. |
---|
110 | |
---|
111 | /// This iterator goes through each edge of a graph. |
---|
112 | /// Its usage is quite simple, for example you can count the number |
---|
113 | /// of edges in a graph \c G of type \c Graph as follows: |
---|
114 | /// \code |
---|
115 | ///int count=0; |
---|
116 | ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++; |
---|
117 | /// \endcode |
---|
118 | /// The EdgeIt type of the HierarchyGraph is the EdgeIt type of the actual layer. |
---|
119 | typedef typename Gact::EdgeIt EdgeIt; |
---|
120 | |
---|
121 | |
---|
122 | /// First node of the graph. |
---|
123 | |
---|
124 | /// \retval i the first node. |
---|
125 | /// \return the first node. |
---|
126 | typename Gact::NodeIt &first(typename Gact::NodeIt &i) const { return actuallayer.first(i);} |
---|
127 | |
---|
128 | |
---|
129 | /// The first incoming edge. |
---|
130 | typename Gact::InEdgeIt &first(typename Gact::InEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);} |
---|
131 | |
---|
132 | |
---|
133 | /// The first outgoing edge. |
---|
134 | typename Gact::OutEdgeIt &first(typename Gact::OutEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);} |
---|
135 | |
---|
136 | |
---|
137 | // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;} |
---|
138 | /// The first edge of the Graph. |
---|
139 | typename Gact::EdgeIt &first(typename Gact::EdgeIt &i) const { return actuallayer.first(i);} |
---|
140 | |
---|
141 | |
---|
142 | // Node getNext(Node) const {} |
---|
143 | // InEdgeIt getNext(InEdgeIt) const {} |
---|
144 | // OutEdgeIt getNext(OutEdgeIt) const {} |
---|
145 | // //SymEdgeIt getNext(SymEdgeIt) const {} |
---|
146 | // EdgeIt getNext(EdgeIt) const {} |
---|
147 | |
---|
148 | |
---|
149 | /// Go to the next node. |
---|
150 | typename Gact::NodeIt &next(typename Gact::NodeIt &i) const { return actuallayer.next(i);} |
---|
151 | /// Go to the next incoming edge. |
---|
152 | typename Gact::InEdgeIt &next(typename Gact::InEdgeIt &i) const { return actuallayer.next(i);} |
---|
153 | /// Go to the next outgoing edge. |
---|
154 | typename Gact::OutEdgeIt &next(typename Gact::OutEdgeIt &i) const { return actuallayer.next(i);} |
---|
155 | //SymEdgeIt &next(SymEdgeIt &) const {} |
---|
156 | /// Go to the next edge. |
---|
157 | typename Gact::EdgeIt &next(typename Gact::EdgeIt &i) const { return actuallayer.next(i);} |
---|
158 | |
---|
159 | ///Gives back the head node of an edge. |
---|
160 | typename Gact::Node head(typename Gact::Edge edge) const { return actuallayer.head(edge); } |
---|
161 | ///Gives back the tail node of an edge. |
---|
162 | typename Gact::Node tail(typename Gact::Edge edge) const { return actuallayer.tail(edge); } |
---|
163 | |
---|
164 | // Node aNode(InEdgeIt) const {} |
---|
165 | // Node aNode(OutEdgeIt) const {} |
---|
166 | // Node aNode(SymEdgeIt) const {} |
---|
167 | |
---|
168 | // Node bNode(InEdgeIt) const {} |
---|
169 | // Node bNode(OutEdgeIt) const {} |
---|
170 | // Node bNode(SymEdgeIt) const {} |
---|
171 | |
---|
172 | /// Checks if a node iterator is valid |
---|
173 | |
---|
174 | ///\todo Maybe, it would be better if iterator converted to |
---|
175 | ///bool directly, as Jacint prefers. |
---|
176 | bool valid(const typename Gact::Node& node) const { return actuallayer.valid(node);} |
---|
177 | /// Checks if an edge iterator is valid |
---|
178 | |
---|
179 | ///\todo Maybe, it would be better if iterator converted to |
---|
180 | ///bool directly, as Jacint prefers. |
---|
181 | bool valid(const typename Gact::Edge& edge) const { return actuallayer.valid(edge);} |
---|
182 | |
---|
183 | ///Gives back the \e id of a node. |
---|
184 | |
---|
185 | ///\warning Not all graph structures provide this feature. |
---|
186 | /// |
---|
187 | int id(const typename Gact::Node & node) const { return actuallayer.id(node);} |
---|
188 | ///Gives back the \e id of an edge. |
---|
189 | |
---|
190 | ///\warning Not all graph structures provide this feature. |
---|
191 | /// |
---|
192 | int id(const typename Gact::Edge & edge) const { return actuallayer.id(edge);} |
---|
193 | |
---|
194 | //void setInvalid(Node &) const {}; |
---|
195 | //void setInvalid(Edge &) const {}; |
---|
196 | |
---|
197 | ///Add a new node to the graph. |
---|
198 | |
---|
199 | /// \return the new node. |
---|
200 | /// |
---|
201 | typename Gact::Node addNode() { return actuallayer.addNode();} |
---|
202 | ///Add a new edge to the graph. |
---|
203 | |
---|
204 | ///Add a new edge to the graph with tail node \c tail |
---|
205 | ///and head node \c head. |
---|
206 | ///\return the new edge. |
---|
207 | typename Gact::Edge addEdge(typename Gact::Node node1, typename Gact::Node node2) { return actuallayer.addEdge(node1, node2);} |
---|
208 | |
---|
209 | /// Resets the graph. |
---|
210 | |
---|
211 | /// This function deletes all edges and nodes of the graph. |
---|
212 | /// It also frees the memory allocated to store them. |
---|
213 | void clear() {actuallayer.clear();} |
---|
214 | |
---|
215 | int nodeNum() const { return actuallayer.nodeNum();} |
---|
216 | int edgeNum() const { return actuallayer.edgeNum();} |
---|
217 | |
---|
218 | ///Read/write/reference map of the nodes to type \c T. |
---|
219 | |
---|
220 | ///Read/write/reference map of the nodes to type \c T. |
---|
221 | /// \sa MemoryMapSkeleton |
---|
222 | /// \todo We may need copy constructor |
---|
223 | /// \todo We may need conversion from other nodetype |
---|
224 | /// \todo We may need operator= |
---|
225 | /// \warning Making maps that can handle bool type (NodeMap<bool>) |
---|
226 | /// needs extra attention! |
---|
227 | |
---|
228 | template<class T> class NodeMap |
---|
229 | { |
---|
230 | public: |
---|
231 | typedef T ValueType; |
---|
232 | typedef Node KeyType; |
---|
233 | |
---|
234 | NodeMap(const HierarchyGraph &) {} |
---|
235 | NodeMap(const HierarchyGraph &, T) {} |
---|
236 | |
---|
237 | template<typename TT> NodeMap(const NodeMap<TT> &) {} |
---|
238 | |
---|
239 | /// Sets the value of a node. |
---|
240 | |
---|
241 | /// Sets the value associated with node \c i to the value \c t. |
---|
242 | /// |
---|
243 | void set(Node, T) {} |
---|
244 | // Gets the value of a node. |
---|
245 | //T get(Node i) const {return *(T*)0;} //FIXME: Is it necessary? |
---|
246 | T &operator[](Node) {return *(T*)0;} |
---|
247 | const T &operator[](Node) const {return *(T*)0;} |
---|
248 | |
---|
249 | /// Updates the map if the graph has been changed |
---|
250 | |
---|
251 | /// \todo Do we need this? |
---|
252 | /// |
---|
253 | void update() {} |
---|
254 | void update(T a) {} //FIXME: Is it necessary |
---|
255 | }; |
---|
256 | |
---|
257 | ///Read/write/reference map of the edges to type \c T. |
---|
258 | |
---|
259 | ///Read/write/reference map of the edges to type \c T. |
---|
260 | ///It behaves exactly in the same way as \ref NodeMap. |
---|
261 | /// \sa NodeMap |
---|
262 | /// \sa MemoryMapSkeleton |
---|
263 | /// \todo We may need copy constructor |
---|
264 | /// \todo We may need conversion from other edgetype |
---|
265 | /// \todo We may need operator= |
---|
266 | template<class T> class EdgeMap |
---|
267 | { |
---|
268 | public: |
---|
269 | typedef T ValueType; |
---|
270 | typedef Edge KeyType; |
---|
271 | |
---|
272 | EdgeMap(const HierarchyGraph &) {} |
---|
273 | EdgeMap(const HierarchyGraph &, T ) {} |
---|
274 | |
---|
275 | ///\todo It can copy between different types. |
---|
276 | /// |
---|
277 | template<typename TT> EdgeMap(const EdgeMap<TT> &) {} |
---|
278 | |
---|
279 | void set(Edge, T) {} |
---|
280 | //T get(Edge) const {return *(T*)0;} |
---|
281 | T &operator[](Edge) {return *(T*)0;} |
---|
282 | const T &operator[](Edge) const {return *(T*)0;} |
---|
283 | |
---|
284 | void update() {} |
---|
285 | void update(T a) {} //FIXME: Is it necessary |
---|
286 | }; |
---|
287 | }; |
---|
288 | |
---|
289 | /// An empty eraseable graph class. |
---|
290 | |
---|
291 | /// This class provides all the common features of an \e eraseable graph |
---|
292 | /// structure, |
---|
293 | /// however completely without implementations and real data structures |
---|
294 | /// behind the interface. |
---|
295 | /// All graph algorithms should compile with this class, but it will not |
---|
296 | /// run properly, of course. |
---|
297 | /// |
---|
298 | /// \todo This blabla could be replaced by a sepatate description about |
---|
299 | /// Skeletons. |
---|
300 | /// |
---|
301 | /// It can be used for checking the interface compatibility, |
---|
302 | /// or it can serve as a skeleton of a new graph structure. |
---|
303 | /// |
---|
304 | /// Also, you will find here the full documentation of a certain graph |
---|
305 | /// feature, the documentation of a real graph imlementation |
---|
306 | /// like @ref ListGraph or |
---|
307 | /// @ref SmartGraph will just refer to this structure. |
---|
308 | template <typename Gact, typename Gsub> |
---|
309 | class EraseableHierarchyGraph : public HierarchyGraph<Gact, Gsub> |
---|
310 | { |
---|
311 | public: |
---|
312 | /// Deletes a node. |
---|
313 | void erase(typename Gact::Node n) {actuallayer.erase(n);} |
---|
314 | /// Deletes an edge. |
---|
315 | void erase(typename Gact::Edge e) {actuallayer.erase(e);} |
---|
316 | |
---|
317 | /// Defalult constructor. |
---|
318 | EraseableHierarchyGraph() {} |
---|
319 | ///Copy consructor. |
---|
320 | EraseableHierarchyGraph(const HierarchyGraph<Gact, Gsub> &EPG) {} |
---|
321 | }; |
---|
322 | |
---|
323 | |
---|
324 | // @} |
---|
325 | |
---|
326 | } //namespace hugo |
---|
327 | |
---|
328 | |
---|
329 | #endif // HUGO_SKELETON_GRAPH_H |
---|