/* reverse_bfs by jacint Performs a bfs on the out edges. It does not count predecessors, only the distances, but one can easily modify it to know the pred as well. Constructor: reverse_bfs(graph_type& G, node_iterator t) Member functions: void run(): runs a reverse bfs from t The following function should be used after run() was already run. int dist(node_iterator v) : returns the distance from v to t. It is the number of nodes if t is not reachable from v. */ #ifndef REVERSE_BFS_HH #define REVERSE_BFS_HH #include #include #include namespace marci { template class reverse_bfs { typedef typename graph_traits::node_iterator node_iterator; //typedef typename graph_traits::edge_iterator edge_iterator; typedef typename graph_traits::each_node_iterator each_node_iterator; typedef typename graph_traits::in_edge_iterator in_edge_iterator; graph_type& G; node_iterator t; // node_property_vector pred; node_property_vector distance; public : /* The distance of the nodes is n, except t for which it is 0. */ reverse_bfs(graph_type& _G, node_iterator _t) : G(_G), t(_t), distance(G, number_of(G.first_node())) { distance.put(t,0); } void run() { node_property_vector reached(G, false); reached.put(t, true); std::queue bfs_queue; bfs_queue.push(t); while (!bfs_queue.empty()) { node_iterator v=bfs_queue.front(); bfs_queue.pop(); for(in_edge_iterator e=G.first_in_edge(v); e.valid(); ++e) { node_iterator w=G.tail(e); if (!reached.get(w)) { bfs_queue.push(w); distance.put(w, distance.get(v)+1); reached.put(w, true); } } } } int dist(node_iterator v) { return distance.get(v); } }; } // namespace marci #endif //REVERSE_BFS_HH