COIN-OR::LEMON - Graph Library

source: lemon-0.x/tools/lgf-gen.cc @ 2529:93de38566e6c

Last change on this file since 2529:93de38566e6c was 2493:6231d9d3957b, checked in by Balazs Dezso, 17 years ago

Bad documentation

File size: 22.9 KB
RevLine 
[2391]1/* -*- C++ -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library
4 *
5 * Copyright (C) 2003-2007
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
[2491]18///\ingroup tools
19///\file
20///\brief Special plane graph generator.
21///
22///Graph generator application for various types of plane graphs.
23///
24///\verbatim
25/// Usage:
26///   ./tools/lgf-gen [-2con|-tree|-tsp|-tsp2|-dela] [-disc|-square|-gauss]
27///      [-rand|-seed int] [--help|-h|-help] [-area num] [-cities int] [-dir]
28///      [-eps] [-g int] [-n int] [prefix]
29/// Where:
30///   [prefix]
31///      Prefix of the output files. Default is 'lgf-gen-out'
32///   --help|-h|-help
33///      Print a short help message
34///   -2con
35///      Create a two connected planar graph
36///   -area num
37///      Full relative area of the cities (default is 1)
38///   -cities int
39///      Number of cities (default is 1)
40///   -dela
41///      Delaunay triangulation graph
42///   -dir
43///      Directed graph is generated (each edges are replaced by two directed ones)
44///   -disc
45///      Nodes are evenly distributed on a unit disc (default)
46///   -eps
47///      Also generate .eps output (prefix.eps)
48///   -g int
49///      Girth parameter (default is 10)
50///   -gauss
51///      Nodes are located according to a two-dim gauss distribution
52///   -n int
53///      Number of nodes (default is 100)
54///   -rand
55///      Use time seed for random number generator
56///   -seed int
57///      Random seed
58///   -square
59///      Nodes are evenly distributed on a unit square
60///   -tree
61///      Create a min. cost spanning tree
62///   -tsp
63///      Create a TSP tour
64///   -tsp2
65///      Create a TSP tour (tree based)
66///\endverbatim
67/// \image html plane_tree.png
68/// \image latex plane_tree.eps "Eucledian spanning tree" width=\textwidth
69///
70
[2391]71
[2390]72#include <lemon/list_graph.h>
73#include <lemon/graph_utils.h>
74#include <lemon/random.h>
75#include <lemon/dim2.h>
76#include <lemon/bfs.h>
77#include <lemon/counter.h>
78#include <lemon/suurballe.h>
79#include <lemon/graph_to_eps.h>
80#include <lemon/graph_writer.h>
81#include <lemon/arg_parser.h>
[2446]82#include <lemon/euler.h>
[2390]83#include <cmath>
84#include <algorithm>
[2447]85#include <lemon/kruskal.h>
[2402]86#include <lemon/time_measure.h>
[2390]87
88using namespace lemon;
89
90typedef dim2::Point<double> Point;
91
92UGRAPH_TYPEDEFS(ListUGraph);
93
[2402]94bool progress=true;
95
[2390]96int N;
[2402]97// int girth;
[2390]98
99ListUGraph g;
100
101std::vector<Node> nodes;
102ListUGraph::NodeMap<Point> coords(g);
103
[2446]104
105double totalLen(){
106  double tlen=0;
107  for(UEdgeIt e(g);e!=INVALID;++e)
108    tlen+=sqrt((coords[g.source(e)]-coords[g.target(e)]).normSquare());
109  return tlen;
110}
111
[2390]112int tsp_impr_num=0;
113
114const double EPSILON=1e-8;
115bool tsp_improve(Node u, Node v)
116{
117  double luv=std::sqrt((coords[v]-coords[u]).normSquare());
118  Node u2=u;
119  Node v2=v;
120  do {
121    Node n;
122    for(IncEdgeIt e(g,v2);(n=g.runningNode(e))==u2;++e);
123    u2=v2;
124    v2=n;
125    if(luv+std::sqrt((coords[v2]-coords[u2]).normSquare())-EPSILON>
126       std::sqrt((coords[u]-coords[u2]).normSquare())+
127       std::sqrt((coords[v]-coords[v2]).normSquare()))
128      {
129        g.erase(findUEdge(g,u,v));
130        g.erase(findUEdge(g,u2,v2));
131        g.addEdge(u2,u);
132        g.addEdge(v,v2);
133        tsp_impr_num++;
134        return true;
135      }
136  } while(v2!=u);
137  return false;
138}
139
140bool tsp_improve(Node u)
141{
142  for(IncEdgeIt e(g,u);e!=INVALID;++e)
143    if(tsp_improve(u,g.runningNode(e))) return true;
144  return false;
145}
146
147void tsp_improve()
148{
149  bool b;
150  do {
151    b=false;
152    for(NodeIt n(g);n!=INVALID;++n)
153      if(tsp_improve(n)) b=true;
154  } while(b);
155}
156
157void tsp()
158{
159  for(int i=0;i<N;i++) g.addEdge(nodes[i],nodes[(i+1)%N]);
160  tsp_improve();
161}
162
163class Line
164{
165public:
166  Point a;
167  Point b;
168  Line(Point _a,Point _b) :a(_a),b(_b) {}
169  Line(Node _a,Node _b) : a(coords[_a]),b(coords[_b]) {}
170  Line(const Edge &e) : a(coords[g.source(e)]),b(coords[g.target(e)]) {}
171  Line(const UEdge &e) : a(coords[g.source(e)]),b(coords[g.target(e)]) {}
172};
173 
174inline std::ostream& operator<<(std::ostream &os, const Line &l)
175{
176  os << l.a << "->" << l.b;
177  return os;
178}
179
180bool cross(Line a, Line b)
181{
182  Point ao=rot90(a.b-a.a);
183  Point bo=rot90(b.b-b.a);
184  return (ao*(b.a-a.a))*(ao*(b.b-a.a))<0 &&
185    (bo*(a.a-b.a))*(bo*(a.b-b.a))<0;
186}
187
188struct Pedge
189{
190  Node a;
191  Node b;
192  double len;
193};
194
195bool pedgeLess(Pedge a,Pedge b)
196{
197  return a.len<b.len;
198}
199
200std::vector<UEdge> edges;
201
[2447]202namespace _delaunay_bits {
203
204  struct Part {
205    int prev, curr, next;
206
207    Part(int p, int c, int n) : prev(p), curr(c), next(n) {}
208  };
209
210  inline std::ostream& operator<<(std::ostream& os, const Part& part) {
211    os << '(' << part.prev << ',' << part.curr << ',' << part.next << ')';
212    return os;
213  }
214
215  inline double circle_point(const Point& p, const Point& q, const Point& r) {
216    double a = p.x * (q.y - r.y) + q.x * (r.y - p.y) + r.x * (p.y - q.y);
217    if (a == 0) return std::numeric_limits<double>::quiet_NaN();
218
219    double d = (p.x * p.x + p.y * p.y) * (q.y - r.y) +
220      (q.x * q.x + q.y * q.y) * (r.y - p.y) +
221      (r.x * r.x + r.y * r.y) * (p.y - q.y);
222
223    double e = (p.x * p.x + p.y * p.y) * (q.x - r.x) +
224      (q.x * q.x + q.y * q.y) * (r.x - p.x) +
225      (r.x * r.x + r.y * r.y) * (p.x - q.x);
226
227    double f = (p.x * p.x + p.y * p.y) * (q.x * r.y - r.x * q.y) +
228      (q.x * q.x + q.y * q.y) * (r.x * p.y - p.x * r.y) +
229      (r.x * r.x + r.y * r.y) * (p.x * q.y - q.x * p.y);
230
231    return d / (2 * a) + sqrt((d * d + e * e) / (4 * a * a) + f / a);
232  }
233
234  inline bool circle_form(const Point& p, const Point& q, const Point& r) {
235    return rot90(q - p) * (r - q) < 0.0;
236  }
237
238  inline double intersection(const Point& p, const Point& q, double sx) {
239    const double epsilon = 1e-8;
240
241    if (p.x == q.x) return (p.y + q.y) / 2.0;
242
243    if (sx < p.x + epsilon) return p.y;
244    if (sx < q.x + epsilon) return q.y;
245   
246    double a = q.x - p.x;
247    double b = (q.x - sx) * p.y - (p.x - sx) * q.y;   
248    double d = (q.x - sx) * (p.x - sx) * (p - q).normSquare();
249    return (b - sqrt(d)) / a;
250  }
251
252  struct YLess {
253
254
255    YLess(const std::vector<Point>& points, double& sweep)
256      : _points(points), _sweep(sweep) {}
257
258    bool operator()(const Part& l, const Part& r) const {
259      const double epsilon = 1e-8;
260
261      //      std::cerr << l << " vs " << r << std::endl;
262      double lbx = l.prev != -1 ?
263        intersection(_points[l.prev], _points[l.curr], _sweep) :
264        - std::numeric_limits<double>::infinity();
265      double rbx = r.prev != -1 ?
266        intersection(_points[r.prev], _points[r.curr], _sweep) :
267        - std::numeric_limits<double>::infinity();
268      double lex = l.next != -1 ?
269        intersection(_points[l.curr], _points[l.next], _sweep) :
270        std::numeric_limits<double>::infinity();
271      double rex = r.next != -1 ?
272        intersection(_points[r.curr], _points[r.next], _sweep) :
273        std::numeric_limits<double>::infinity();
274
275      if (lbx > lex) std::swap(lbx, lex);
276      if (rbx > rex) std::swap(rbx, rex);
277
278      if (lex < epsilon + rex && lbx + epsilon < rex) return true;
279      if (rex < epsilon + lex && rbx + epsilon < lex) return false;
280      return lex < rex;
281    }
282   
283    const std::vector<Point>& _points;
284    double& _sweep;
285  };
286 
287  struct BeachIt;
288 
289  typedef std::multimap<double, BeachIt> SpikeHeap;
290
291  typedef std::multimap<Part, SpikeHeap::iterator, YLess> Beach;
292
293  struct BeachIt {
294    Beach::iterator it;
295
296    BeachIt(Beach::iterator iter) : it(iter) {}
297  };
298
299}
300
301inline void delaunay() {
[2390]302  Counter cnt("Number of edges added: ");
[2447]303 
304  using namespace _delaunay_bits;
305
306  typedef _delaunay_bits::Part Part;
307  typedef std::vector<std::pair<double, int> > SiteHeap;
308
309
310  std::vector<Point> points;
311  std::vector<Node> nodes;
312
313  for (NodeIt it(g); it != INVALID; ++it) {
314    nodes.push_back(it);
315    points.push_back(coords[it]);
316  }
317
318  SiteHeap siteheap(points.size());
319
320  double sweep;
321
322
323  for (int i = 0; i < int(siteheap.size()); ++i) {
324    siteheap[i] = std::make_pair(points[i].x, i);
325  }
326 
327  std::sort(siteheap.begin(), siteheap.end());
328  sweep = siteheap.front().first;
329 
330  YLess yless(points, sweep);
331  Beach beach(yless);
332
333  SpikeHeap spikeheap;
334
335  std::set<std::pair<int, int> > edges;
336
[2453]337  int siteindex = 0;
338  {
339    SiteHeap front;
340
341    while (siteindex < int(siteheap.size()) &&
342           siteheap[0].first == siteheap[siteindex].first) {
343      front.push_back(std::make_pair(points[siteheap[siteindex].second].y,
344                                     siteheap[siteindex].second));
345      ++siteindex;
346    }
347   
348    std::sort(front.begin(), front.end());
349
350    for (int i = 0; i < int(front.size()); ++i) {
351      int prev = (i == 0 ? -1 : front[i - 1].second);
352      int curr = front[i].second;
353      int next = (i + 1 == int(front.size()) ? -1 : front[i + 1].second);
354
355      beach.insert(std::make_pair(Part(prev, curr, next),
356                                  spikeheap.end()));     
357    }
358  }
[2447]359
360  while (siteindex < int(points.size()) || !spikeheap.empty()) {
361
362    SpikeHeap::iterator spit = spikeheap.begin();
363
364    if (siteindex < int(points.size()) &&
365        (spit == spikeheap.end() || siteheap[siteindex].first < spit->first)) {
366      int site = siteheap[siteindex].second;
367      sweep = siteheap[siteindex].first;
368         
369      Beach::iterator bit = beach.upper_bound(Part(site, site, site));
370     
371      if (bit->second != spikeheap.end()) {
372        spikeheap.erase(bit->second);   
373      }
374
375      int prev = bit->first.prev;
376      int curr = bit->first.curr;
377      int next = bit->first.next;
378
379      beach.erase(bit);
380     
381      SpikeHeap::iterator pit = spikeheap.end();
382      if (prev != -1 &&
383          circle_form(points[prev], points[curr], points[site])) {
384        double x = circle_point(points[prev], points[curr], points[site]);
385        pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
386        pit->second.it =
387          beach.insert(std::make_pair(Part(prev, curr, site), pit));
388      } else {
389        beach.insert(std::make_pair(Part(prev, curr, site), pit));
390      }
391
392      beach.insert(std::make_pair(Part(curr, site, curr), spikeheap.end()));
393     
394      SpikeHeap::iterator nit = spikeheap.end();
395      if (next != -1 &&
396          circle_form(points[site], points[curr],points[next])) {
397        double x = circle_point(points[site], points[curr], points[next]);
398        nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
399        nit->second.it =
400          beach.insert(std::make_pair(Part(site, curr, next), nit));
401      } else {
402        beach.insert(std::make_pair(Part(site, curr, next), nit));
403      }
404     
405      ++siteindex;
406    } else {
407      sweep = spit->first;     
408
409      Beach::iterator bit = spit->second.it;
410
411      int prev = bit->first.prev;
412      int curr = bit->first.curr;
413      int next = bit->first.next;
414
[2390]415      {
[2447]416        std::pair<int, int> edge;
417
418        edge = prev < curr ?
419          std::make_pair(prev, curr) : std::make_pair(curr, prev);
420       
421        if (edges.find(edge) == edges.end()) {
422          edges.insert(edge);
423          g.addEdge(nodes[prev], nodes[curr]);
424          ++cnt;
425        }
426
427        edge = curr < next ?
428          std::make_pair(curr, next) : std::make_pair(next, curr);
429       
430        if (edges.find(edge) == edges.end()) {
431          edges.insert(edge);
432          g.addEdge(nodes[curr], nodes[next]);
433          ++cnt;
434        }
[2390]435      }
[2447]436     
437      Beach::iterator pbit = bit; --pbit;
438      int ppv = pbit->first.prev;
439      Beach::iterator nbit = bit; ++nbit;
440      int nnt = nbit->first.next;
441
442      if (bit->second != spikeheap.end()) spikeheap.erase(bit->second);
443      if (pbit->second != spikeheap.end()) spikeheap.erase(pbit->second);
444      if (nbit->second != spikeheap.end()) spikeheap.erase(nbit->second);
445
446      beach.erase(nbit);
447      beach.erase(bit);
448      beach.erase(pbit);
449
450      SpikeHeap::iterator pit = spikeheap.end();
451      if (ppv != -1 && ppv != next &&
452          circle_form(points[ppv], points[prev], points[next])) {
453        double x = circle_point(points[ppv], points[prev], points[next]);
454        if (x < sweep) x = sweep;
455        pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
456        pit->second.it =
457          beach.insert(std::make_pair(Part(ppv, prev, next), pit));
458      } else {
459        beach.insert(std::make_pair(Part(ppv, prev, next), pit));
[2390]460      }
[2447]461
462      SpikeHeap::iterator nit = spikeheap.end();
463      if (nnt != -1 && prev != nnt &&
464          circle_form(points[prev], points[next], points[nnt])) {
465        double x = circle_point(points[prev], points[next], points[nnt]);
466        if (x < sweep) x = sweep;
467        nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
468        nit->second.it =
469          beach.insert(std::make_pair(Part(prev, next, nnt), nit));
470      } else {
471        beach.insert(std::make_pair(Part(prev, next, nnt), nit));
472      }
473     
[2390]474    }
[2447]475  }
476
477  for (Beach::iterator it = beach.begin(); it != beach.end(); ++it) {
478    int curr = it->first.curr;
479    int next = it->first.next;
480
481    if (next == -1) continue;
482
483    std::pair<int, int> edge;
484
485    edge = curr < next ?
486      std::make_pair(curr, next) : std::make_pair(next, curr);
487   
488    if (edges.find(edge) == edges.end()) {
489      edges.insert(edge);
490      g.addEdge(nodes[curr], nodes[next]);
491      ++cnt;
492    }
493  }
[2390]494}
495
496void sparse(int d)
497{
498  Counter cnt("Number of edges removed: ");
499  Bfs<ListUGraph> bfs(g);
500  for(std::vector<UEdge>::reverse_iterator ei=edges.rbegin();
501      ei!=edges.rend();++ei)
502    {
503      Node a=g.source(*ei);
504      Node b=g.target(*ei);
505      g.erase(*ei);
506      bfs.run(a,b);
507      if(bfs.predEdge(b)==INVALID || bfs.dist(b)>d)
508        g.addEdge(a,b);
509      else cnt++;
510    }
511}
512
513void sparse2(int d)
514{
515  Counter cnt("Number of edges removed: ");
516  for(std::vector<UEdge>::reverse_iterator ei=edges.rbegin();
517      ei!=edges.rend();++ei)
518    {
519      Node a=g.source(*ei);
520      Node b=g.target(*ei);
521      g.erase(*ei);
522      ConstMap<Edge,int> cegy(1);
523      Suurballe<ListUGraph,ConstMap<Edge,int> > sur(g,cegy,a,b);
524      int k=sur.run(2);
525      if(k<2 || sur.totalLength()>d)
526        g.addEdge(a,b);
527      else cnt++;
528//       else std::cout << "Remove edge " << g.id(a) << "-" << g.id(b) << '\n';
529    }
530}
531
532void sparseTriangle(int d)
533{
534  Counter cnt("Number of edges added: ");
535  std::vector<Pedge> pedges;
536  for(NodeIt n(g);n!=INVALID;++n)
537    for(NodeIt m=++(NodeIt(n));m!=INVALID;++m)
538      {
539        Pedge p;
540        p.a=n;
541        p.b=m;
542        p.len=(coords[m]-coords[n]).normSquare();
543        pedges.push_back(p);
544      }
545  std::sort(pedges.begin(),pedges.end(),pedgeLess);
546  for(std::vector<Pedge>::iterator pi=pedges.begin();pi!=pedges.end();++pi)
547    {
548      Line li(pi->a,pi->b);
549      UEdgeIt e(g);
550      for(;e!=INVALID && !cross(e,li);++e) ;
551      UEdge ne;
552      if(e==INVALID) {
553        ConstMap<Edge,int> cegy(1);
554        Suurballe<ListUGraph,ConstMap<Edge,int> >
555          sur(g,cegy,pi->a,pi->b);
556        int k=sur.run(2);
557        if(k<2 || sur.totalLength()>d)
558          {
559            ne=g.addEdge(pi->a,pi->b);
560            edges.push_back(ne);
561            cnt++;
562          }
563      }
564    }
565}
566
[2447]567template <typename UGraph, typename CoordMap>
568class LengthSquareMap {
569public:
570  typedef typename UGraph::UEdge Key;
571  typedef typename CoordMap::Value::Value Value;
572
573  LengthSquareMap(const UGraph& ugraph, const CoordMap& coords)
574    : _ugraph(ugraph), _coords(coords) {}
575
576  Value operator[](const Key& key) const {
577    return (_coords[_ugraph.target(key)] -
578            _coords[_ugraph.source(key)]).normSquare();
579  }
580
581private:
582
583  const UGraph& _ugraph;
584  const CoordMap& _coords;
585};
586
[2390]587void minTree() {
588  std::vector<Pedge> pedges;
[2402]589  Timer T;
[2447]590  std::cout << T.realTime() << "s: Creating delaunay triangulation...\n";
591  delaunay();
592  std::cout << T.realTime() << "s: Calculating spanning tree...\n";
593  LengthSquareMap<ListUGraph, ListUGraph::NodeMap<Point> > ls(g, coords);
594  ListUGraph::UEdgeMap<bool> tree(g);
595  kruskal(g, ls, tree);
596  std::cout << T.realTime() << "s: Removing non tree edges...\n";
597  std::vector<UEdge> remove;
598  for (UEdgeIt e(g); e != INVALID; ++e) {
599    if (!tree[e]) remove.push_back(e);
600  }
601  for(int i = 0; i < int(remove.size()); ++i) {
602    g.erase(remove[i]);
603  }
[2402]604  std::cout << T.realTime() << "s: Done\n";
[2390]605}
606
[2446]607void tsp2()
608{
609  std::cout << "Find a tree..." << std::endl;
610
611  minTree();
612
613  std::cout << "Total edge length (tree) : " << totalLen() << std::endl;
614
615  std::cout << "Make it Euler..." << std::endl;
616
617  {
618    std::vector<Node> leafs;
619    for(NodeIt n(g);n!=INVALID;++n)
620      if(countIncEdges(g,n)%2==1) leafs.push_back(n);
[2448]621
622//    for(unsigned int i=0;i<leafs.size();i+=2)
623//       g.addEdge(leafs[i],leafs[i+1]);
624
625    std::vector<Pedge> pedges;
626    for(unsigned int i=0;i<leafs.size()-1;i++)
627      for(unsigned int j=i+1;j<leafs.size();j++)
628        {
629          Node n=leafs[i];
630          Node m=leafs[j];
631          Pedge p;
632          p.a=n;
633          p.b=m;
634          p.len=(coords[m]-coords[n]).normSquare();
635          pedges.push_back(p);
636        }
637    std::sort(pedges.begin(),pedges.end(),pedgeLess);
638    for(unsigned int i=0;i<pedges.size();i++)
639      if(countIncEdges(g,pedges[i].a)%2 &&
640         countIncEdges(g,pedges[i].b)%2)
641        g.addEdge(pedges[i].a,pedges[i].b);
[2446]642  }
643
644  for(NodeIt n(g);n!=INVALID;++n)
[2448]645    if(countIncEdges(g,n)%2 || countIncEdges(g,n)==0 )
[2446]646      std::cout << "GEBASZ!!!" << std::endl;
647 
[2448]648  for(UEdgeIt e(g);e!=INVALID;++e)
649    if(g.source(e)==g.target(e))
650      std::cout << "LOOP GEBASZ!!!" << std::endl;
651 
[2446]652  std::cout << "Number of edges : " << countUEdges(g) << std::endl;
653 
654  std::cout << "Total edge length (euler) : " << totalLen() << std::endl;
655
[2448]656  ListUGraph::UEdgeMap<Edge> enext(g);
[2446]657  {
658    UEulerIt<ListUGraph> e(g);
[2448]659    Edge eo=e;
660    Edge ef=e;
[2446]661//     std::cout << "Tour edge: " << g.id(UEdge(e)) << std::endl;     
662    for(++e;e!=INVALID;++e)
663      {
664//      std::cout << "Tour edge: " << g.id(UEdge(e)) << std::endl;     
665        enext[eo]=e;
666        eo=e;
667      }
668    enext[eo]=ef;
669  }
[2448]670   
[2446]671  std::cout << "Creating a tour from that..." << std::endl;
672 
673  int nnum = countNodes(g);
674  int ednum = countUEdges(g);
675 
[2448]676  for(Edge p=enext[UEdgeIt(g)];ednum>nnum;p=enext[p])
[2446]677    {
678//       std::cout << "Checking edge " << g.id(p) << std::endl;     
[2448]679      Edge e=enext[p];
680      Edge f=enext[e];
681      Node n2=g.source(f);
[2446]682      Node n1=g.oppositeNode(n2,e);
683      Node n3=g.oppositeNode(n2,f);
684      if(countIncEdges(g,n2)>2)
685        {
686//        std::cout << "Remove an Edge" << std::endl;
[2448]687          Edge ff=enext[f];
[2446]688          g.erase(e);
689          g.erase(f);
[2448]690          if(n1!=n3)
691            {
692              Edge ne=g.direct(g.addEdge(n1,n3),n1);
693              enext[p]=ne;
694              enext[ne]=ff;
695              ednum--;
696            }
697          else {
698            enext[p]=ff;
699            ednum-=2;
700          }
[2446]701        }
702    }
703
704  std::cout << "Total edge length (tour) : " << totalLen() << std::endl;
705
[2448]706  std::cout << "2-opt the tour..." << std::endl;
707 
[2446]708  tsp_improve();
709 
710  std::cout << "Total edge length (2-opt tour) : " << totalLen() << std::endl;
711}
[2390]712
713
[2410]714int main(int argc,const char **argv)
[2390]715{
716  ArgParser ap(argc,argv);
717
[2402]718//   bool eps;
[2390]719  bool disc_d, square_d, gauss_d;
[2402]720//   bool tsp_a,two_a,tree_a;
[2390]721  int num_of_cities=1;
722  double area=1;
723  N=100;
[2402]724//   girth=10;
[2390]725  std::string ndist("disc");
[2402]726  ap.refOption("n", "Number of nodes (default is 100)", N)
727    .intOption("g", "Girth parameter (default is 10)", 10)
728    .refOption("cities", "Number of cities (default is 1)", num_of_cities)
729    .refOption("area", "Full relative area of the cities (default is 1)", area)
730    .refOption("disc", "Nodes are evenly distributed on a unit disc (default)",disc_d)
[2390]731    .optionGroup("dist", "disc")
[2402]732    .refOption("square", "Nodes are evenly distributed on a unit square", square_d)
[2390]733    .optionGroup("dist", "square")
[2402]734    .refOption("gauss",
[2390]735            "Nodes are located according to a two-dim gauss distribution",
736            gauss_d)
737    .optionGroup("dist", "gauss")
738//     .mandatoryGroup("dist")
739    .onlyOneGroup("dist")
[2402]740    .boolOption("eps", "Also generate .eps output (prefix.eps)")
[2446]741    .boolOption("dir", "Directed graph is generated (each edges are replaced by two directed ones)")
[2402]742    .boolOption("2con", "Create a two connected planar graph")
[2390]743    .optionGroup("alg","2con")
[2402]744    .boolOption("tree", "Create a min. cost spanning tree")
[2390]745    .optionGroup("alg","tree")
[2402]746    .boolOption("tsp", "Create a TSP tour")
[2390]747    .optionGroup("alg","tsp")
[2446]748    .boolOption("tsp2", "Create a TSP tour (tree based)")
749    .optionGroup("alg","tsp2")
[2447]750    .boolOption("dela", "Delaunay triangulation graph")
751    .optionGroup("alg","dela")
[2390]752    .onlyOneGroup("alg")
[2447]753    .boolOption("rand", "Use time seed for random number generator")
754    .optionGroup("rand", "rand")
755    .intOption("seed", "Random seed", -1)
756    .optionGroup("rand", "seed")
757    .onlyOneGroup("rand")
[2390]758    .other("[prefix]","Prefix of the output files. Default is 'lgf-gen-out'")
759    .run();
[2447]760
761  if (ap["rand"]) {
762    int seed = time(0);
763    std::cout << "Random number seed: " << seed << std::endl;
764    rnd = Random(seed);
765  }
766  if (ap.given("seed")) {
767    int seed = ap["seed"];
768    std::cout << "Random number seed: " << seed << std::endl;
769    rnd = Random(seed);
770  }
[2390]771 
772  std::string prefix;
773  switch(ap.files().size())
774    {
775    case 0:
776      prefix="lgf-gen-out";
777      break;
778    case 1:
779      prefix=ap.files()[0];
780      break;
781    default:
782      std::cerr << "\nAt most one prefix can be given\n\n";
783      exit(1);
784    }
785 
786  double sum_sizes=0;
787  std::vector<double> sizes;
788  std::vector<double> cum_sizes;
789  for(int s=0;s<num_of_cities;s++)
790    {
791      //        sum_sizes+=rnd.exponential();
792      double d=rnd();
793      sum_sizes+=d;
794      sizes.push_back(d);
795      cum_sizes.push_back(sum_sizes);
796    }
797  int i=0;
798  for(int s=0;s<num_of_cities;s++)
799    {
800      Point center=(num_of_cities==1?Point(0,0):rnd.disc());
801      if(gauss_d)
802        for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
803          Node n=g.addNode();
804          nodes.push_back(n);
805          coords[n]=center+rnd.gauss2()*area*
806            std::sqrt(sizes[s]/sum_sizes);
807        }
808      else if(square_d)
809        for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
810          Node n=g.addNode();
811          nodes.push_back(n);
812          coords[n]=center+Point(rnd()*2-1,rnd()*2-1)*area*
813            std::sqrt(sizes[s]/sum_sizes);
814        }
815      else if(disc_d || true)
816        for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
817          Node n=g.addNode();
818          nodes.push_back(n);
819          coords[n]=center+rnd.disc()*area*
820            std::sqrt(sizes[s]/sum_sizes);
821        }
822    }
[2447]823
824//   for (ListUGraph::NodeIt n(g); n != INVALID; ++n) {
825//     std::cerr << coords[n] << std::endl;
826//   }
[2390]827 
[2402]828  if(ap["tsp"]) {
[2390]829    tsp();
830    std::cout << "#2-opt improvements: " << tsp_impr_num << std::endl;
831  }
[2446]832  if(ap["tsp2"]) {
833    tsp2();
834    std::cout << "#2-opt improvements: " << tsp_impr_num << std::endl;
835  }
[2402]836  else if(ap["2con"]) {
[2390]837    std::cout << "Make triangles\n";
838    //   triangle();
[2402]839    sparseTriangle(ap["g"]);
[2390]840    std::cout << "Make it sparser\n";
[2402]841    sparse2(ap["g"]);
[2390]842  }
[2402]843  else if(ap["tree"]) {
[2390]844    minTree();
845  }
[2447]846  else if(ap["dela"]) {
847    delaunay();
848  }
[2390]849 
850
851  std::cout << "Number of nodes    : " << countNodes(g) << std::endl;
852  std::cout << "Number of edges    : " << countUEdges(g) << std::endl;
853  double tlen=0;
854  for(UEdgeIt e(g);e!=INVALID;++e)
855    tlen+=sqrt((coords[g.source(e)]-coords[g.target(e)]).normSquare());
856  std::cout << "Total edge length  : " << tlen << std::endl;
[2448]857
[2402]858  if(ap["eps"])
[2453]859    graphToEps(g,prefix+".eps").scaleToA4().
[2390]860      scale(600).nodeScale(.2).edgeWidthScale(.001).preScale(false).
861      coords(coords).run();
[2448]862 
[2446]863  if(ap["dir"])
864    GraphWriter<ListUGraph>(prefix+".lgf",g).
865      writeNodeMap("coordinates_x",scaleMap(xMap(coords),600)).
866      writeNodeMap("coordinates_y",scaleMap(yMap(coords),600)).
867      run();
868  else UGraphWriter<ListUGraph>(prefix+".lgf",g).
869         writeNodeMap("coordinates_x",scaleMap(xMap(coords),600)).
870         writeNodeMap("coordinates_y",scaleMap(yMap(coords),600)).
871         run();
[2390]872}
873
Note: See TracBrowser for help on using the repository browser.