/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #include #include #include #include #include //#include //#include //#include #include //#include //#include #include #include #include "test_tools.h" using namespace lemon; char test_lgf[] = "@nodes\n" "label sup1 sup2 sup3\n" " 1 20 27 0\n" " 2 -4 0 0\n" " 3 0 0 0\n" " 4 0 0 0\n" " 5 9 0 0\n" " 6 -6 0 0\n" " 7 0 0 0\n" " 8 0 0 0\n" " 9 3 0 0\n" " 10 -2 0 0\n" " 11 0 0 0\n" " 12 -20 -27 0\n" "\n" "@arcs\n" " cost cap low1 low2\n" " 1 2 70 11 0 8\n" " 1 3 150 3 0 1\n" " 1 4 80 15 0 2\n" " 2 8 80 12 0 0\n" " 3 5 140 5 0 3\n" " 4 6 60 10 0 1\n" " 4 7 80 2 0 0\n" " 4 8 110 3 0 0\n" " 5 7 60 14 0 0\n" " 5 11 120 12 0 0\n" " 6 3 0 3 0 0\n" " 6 9 140 4 0 0\n" " 6 10 90 8 0 0\n" " 7 1 30 5 0 0\n" " 8 12 60 16 0 4\n" " 9 12 50 6 0 0\n" "10 12 70 13 0 5\n" "10 2 100 7 0 0\n" "10 7 60 10 0 0\n" "11 10 20 14 0 6\n" "12 11 30 10 0 0\n" "\n" "@attributes\n" "source 1\n" "target 12\n"; // Check the interface of an MCF algorithm template class McfClassConcept { public: template struct Constraints { void constraints() { checkConcept(); MCF mcf_test1(g, lower, upper, cost, sup); MCF mcf_test2(g, upper, cost, sup); MCF mcf_test3(g, lower, upper, cost, n, n, k); MCF mcf_test4(g, upper, cost, n, n, k); // TODO: This part should be enabled and the next part // should be removed if map copying is supported /* flow = mcf_test1.flowMap(); mcf_test1.flowMap(flow); pot = mcf_test1.potentialMap(); mcf_test1.potentialMap(pot); */ /**/ const typename MCF::FlowMap &fm = mcf_test1.flowMap(); mcf_test1.flowMap(flow); const typename MCF::PotentialMap &pm = mcf_test1.potentialMap(); mcf_test1.potentialMap(pot); ignore_unused_variable_warning(fm); ignore_unused_variable_warning(pm); /**/ mcf_test1.run(); v = mcf_test1.totalCost(); v = mcf_test1.flow(a); v = mcf_test1.potential(n); } typedef typename GR::Node Node; typedef typename GR::Arc Arc; typedef concepts::ReadMap NM; typedef concepts::ReadMap AM; const GR &g; const AM &lower; const AM &upper; const AM &cost; const NM ⊃ const Node &n; const Arc &a; const Value &k; Value v; typename MCF::FlowMap &flow; typename MCF::PotentialMap &pot; }; }; // Check the feasibility of the given flow (primal soluiton) template < typename GR, typename LM, typename UM, typename SM, typename FM > bool checkFlow( const GR& gr, const LM& lower, const UM& upper, const SM& supply, const FM& flow ) { TEMPLATE_DIGRAPH_TYPEDEFS(GR); for (ArcIt e(gr); e != INVALID; ++e) { if (flow[e] < lower[e] || flow[e] > upper[e]) return false; } for (NodeIt n(gr); n != INVALID; ++n) { typename SM::Value sum = 0; for (OutArcIt e(gr, n); e != INVALID; ++e) sum += flow[e]; for (InArcIt e(gr, n); e != INVALID; ++e) sum -= flow[e]; if (sum != supply[n]) return false; } return true; } // Check the feasibility of the given potentials (dual soluiton) // using the Complementary Slackness optimality condition template < typename GR, typename LM, typename UM, typename CM, typename FM, typename PM > bool checkPotential( const GR& gr, const LM& lower, const UM& upper, const CM& cost, const FM& flow, const PM& pi ) { TEMPLATE_DIGRAPH_TYPEDEFS(GR); bool opt = true; for (ArcIt e(gr); opt && e != INVALID; ++e) { typename CM::Value red_cost = cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; opt = red_cost == 0 || (red_cost > 0 && flow[e] == lower[e]) || (red_cost < 0 && flow[e] == upper[e]); } return opt; } // Run a minimum cost flow algorithm and check the results template < typename MCF, typename GR, typename LM, typename UM, typename CM, typename SM > void checkMcf( const MCF& mcf, bool mcf_result, const GR& gr, const LM& lower, const UM& upper, const CM& cost, const SM& supply, bool result, typename CM::Value total, const std::string &test_id = "" ) { check(mcf_result == result, "Wrong result " + test_id); if (result) { check(checkFlow(gr, lower, upper, supply, mcf.flowMap()), "The flow is not feasible " + test_id); check(mcf.totalCost() == total, "The flow is not optimal " + test_id); check(checkPotential(gr, lower, upper, cost, mcf.flowMap(), mcf.potentialMap()), "Wrong potentials " + test_id); } } int main() { // Check the interfaces { typedef int Value; // This typedef should be enabled if the standard maps are // reference maps in the graph concepts //typedef concepts::Digraph GR; typedef ListDigraph GR; typedef concepts::ReadMap NM; typedef concepts::ReadMap AM; //checkConcept< McfClassConcept, // CycleCanceling >(); //checkConcept< McfClassConcept, // CapacityScaling >(); //checkConcept< McfClassConcept, // CostScaling >(); checkConcept< McfClassConcept, NetworkSimplex >(); //checkConcept< MinCostFlow, // NetworkSimplex >(); } // Run various MCF tests typedef ListDigraph Digraph; DIGRAPH_TYPEDEFS(ListDigraph); // Read the test digraph Digraph gr; Digraph::ArcMap c(gr), l1(gr), l2(gr), u(gr); Digraph::NodeMap s1(gr), s2(gr), s3(gr); Node v, w; std::istringstream input(test_lgf); DigraphReader(gr, input) .arcMap("cost", c) .arcMap("cap", u) .arcMap("low1", l1) .arcMap("low2", l2) .nodeMap("sup1", s1) .nodeMap("sup2", s2) .nodeMap("sup3", s3) .node("source", v) .node("target", w) .run(); /* // A. Test CapacityScaling with scaling { CapacityScaling mcf1(gr, u, c, s1); CapacityScaling mcf2(gr, u, c, v, w, 27); CapacityScaling mcf3(gr, u, c, s3); CapacityScaling mcf4(gr, l2, u, c, s1); CapacityScaling mcf5(gr, l2, u, c, v, w, 27); CapacityScaling mcf6(gr, l2, u, c, s3); checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#A1"); checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#A2"); checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#A3"); checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#A4"); checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#A5"); checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#A6"); } // B. Test CapacityScaling without scaling { CapacityScaling mcf1(gr, u, c, s1); CapacityScaling mcf2(gr, u, c, v, w, 27); CapacityScaling mcf3(gr, u, c, s3); CapacityScaling mcf4(gr, l2, u, c, s1); CapacityScaling mcf5(gr, l2, u, c, v, w, 27); CapacityScaling mcf6(gr, l2, u, c, s3); checkMcf(mcf1, mcf1.run(false), gr, l1, u, c, s1, true, 5240, "#B1"); checkMcf(mcf2, mcf2.run(false), gr, l1, u, c, s2, true, 7620, "#B2"); checkMcf(mcf3, mcf3.run(false), gr, l1, u, c, s3, true, 0, "#B3"); checkMcf(mcf4, mcf4.run(false), gr, l2, u, c, s1, true, 5970, "#B4"); checkMcf(mcf5, mcf5.run(false), gr, l2, u, c, s2, true, 8010, "#B5"); checkMcf(mcf6, mcf6.run(false), gr, l2, u, c, s3, false, 0, "#B6"); } // C. Test CostScaling using partial augment-relabel method { CostScaling mcf1(gr, u, c, s1); CostScaling mcf2(gr, u, c, v, w, 27); CostScaling mcf3(gr, u, c, s3); CostScaling mcf4(gr, l2, u, c, s1); CostScaling mcf5(gr, l2, u, c, v, w, 27); CostScaling mcf6(gr, l2, u, c, s3); checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#C1"); checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#C2"); checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#C3"); checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#C4"); checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#C5"); checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#C6"); } // D. Test CostScaling using push-relabel method { CostScaling mcf1(gr, u, c, s1); CostScaling mcf2(gr, u, c, v, w, 27); CostScaling mcf3(gr, u, c, s3); CostScaling mcf4(gr, l2, u, c, s1); CostScaling mcf5(gr, l2, u, c, v, w, 27); CostScaling mcf6(gr, l2, u, c, s3); checkMcf(mcf1, mcf1.run(false), gr, l1, u, c, s1, true, 5240, "#D1"); checkMcf(mcf2, mcf2.run(false), gr, l1, u, c, s2, true, 7620, "#D2"); checkMcf(mcf3, mcf3.run(false), gr, l1, u, c, s3, true, 0, "#D3"); checkMcf(mcf4, mcf4.run(false), gr, l2, u, c, s1, true, 5970, "#D4"); checkMcf(mcf5, mcf5.run(false), gr, l2, u, c, s2, true, 8010, "#D5"); checkMcf(mcf6, mcf6.run(false), gr, l2, u, c, s3, false, 0, "#D6"); } */ // E. Test NetworkSimplex with FIRST_ELIGIBLE_PIVOT { NetworkSimplex::PivotRuleEnum pr = NetworkSimplex::FIRST_ELIGIBLE_PIVOT; NetworkSimplex mcf1(gr, u, c, s1); NetworkSimplex mcf2(gr, u, c, v, w, 27); NetworkSimplex mcf3(gr, u, c, s3); NetworkSimplex mcf4(gr, l2, u, c, s1); NetworkSimplex mcf5(gr, l2, u, c, v, w, 27); NetworkSimplex mcf6(gr, l2, u, c, s3); checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#E1"); checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#E2"); checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#E3"); checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#E4"); checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#E5"); checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#E6"); } // F. Test NetworkSimplex with BEST_ELIGIBLE_PIVOT { NetworkSimplex::PivotRuleEnum pr = NetworkSimplex::BEST_ELIGIBLE_PIVOT; NetworkSimplex mcf1(gr, u, c, s1); NetworkSimplex mcf2(gr, u, c, v, w, 27); NetworkSimplex mcf3(gr, u, c, s3); NetworkSimplex mcf4(gr, l2, u, c, s1); NetworkSimplex mcf5(gr, l2, u, c, v, w, 27); NetworkSimplex mcf6(gr, l2, u, c, s3); checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#F1"); checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#F2"); checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#F3"); checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#F4"); checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#F5"); checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#F6"); } // G. Test NetworkSimplex with BLOCK_SEARCH_PIVOT { NetworkSimplex::PivotRuleEnum pr = NetworkSimplex::BLOCK_SEARCH_PIVOT; NetworkSimplex mcf1(gr, u, c, s1); NetworkSimplex mcf2(gr, u, c, v, w, 27); NetworkSimplex mcf3(gr, u, c, s3); NetworkSimplex mcf4(gr, l2, u, c, s1); NetworkSimplex mcf5(gr, l2, u, c, v, w, 27); NetworkSimplex mcf6(gr, l2, u, c, s3); checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#G1"); checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#G2"); checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#G3"); checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#G4"); checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#G5"); checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#G6"); } // H. Test NetworkSimplex with CANDIDATE_LIST_PIVOT { NetworkSimplex::PivotRuleEnum pr = NetworkSimplex::CANDIDATE_LIST_PIVOT; NetworkSimplex mcf1(gr, u, c, s1); NetworkSimplex mcf2(gr, u, c, v, w, 27); NetworkSimplex mcf3(gr, u, c, s3); NetworkSimplex mcf4(gr, l2, u, c, s1); NetworkSimplex mcf5(gr, l2, u, c, v, w, 27); NetworkSimplex mcf6(gr, l2, u, c, s3); checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#H1"); checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#H2"); checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#H3"); checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#H4"); checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#H5"); checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#H6"); } // I. Test NetworkSimplex with ALTERING_LIST_PIVOT { NetworkSimplex::PivotRuleEnum pr = NetworkSimplex::ALTERING_LIST_PIVOT; NetworkSimplex mcf1(gr, u, c, s1); NetworkSimplex mcf2(gr, u, c, v, w, 27); NetworkSimplex mcf3(gr, u, c, s3); NetworkSimplex mcf4(gr, l2, u, c, s1); NetworkSimplex mcf5(gr, l2, u, c, v, w, 27); NetworkSimplex mcf6(gr, l2, u, c, s3); checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#I1"); checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#I2"); checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#I3"); checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#I4"); checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#I5"); checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#I6"); } /* // J. Test MinCostFlow { MinCostFlow mcf1(gr, u, c, s1); MinCostFlow mcf2(gr, u, c, v, w, 27); MinCostFlow mcf3(gr, u, c, s3); MinCostFlow mcf4(gr, l2, u, c, s1); MinCostFlow mcf5(gr, l2, u, c, v, w, 27); MinCostFlow mcf6(gr, l2, u, c, s3); checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#J1"); checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#J2"); checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#J3"); checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#J4"); checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#J5"); checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#J6"); } */ /* // K. Test MinCostMaxFlow { MinCostMaxFlow mcmf(gr, u, c, v, w); mcmf.run(); checkMcf(mcmf, true, gr, l1, u, c, s3, true, 7620, "#K1"); } */ return 0; }