COIN-OR::LEMON - Graph Library

source: lemon-main/lemon/concepts/graph.h @ 786:e20173729589

Last change on this file since 786:e20173729589 was 786:e20173729589, checked in by Peter Kovacs <kpeter@…>, 14 years ago

Small doc fixes in several files (#331)

File size: 25.1 KB
RevLine 
[209]1/* -*- mode: C++; indent-tabs-mode: nil; -*-
[57]2 *
[209]3 * This file is a part of LEMON, a generic C++ optimization library.
[57]4 *
[440]5 * Copyright (C) 2003-2009
[57]6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19///\ingroup graph_concepts
20///\file
[734]21///\brief The concept of undirected graphs.
[57]22
[529]23#ifndef LEMON_CONCEPTS_GRAPH_H
24#define LEMON_CONCEPTS_GRAPH_H
[57]25
26#include <lemon/concepts/graph_components.h>
[734]27#include <lemon/concepts/maps.h>
28#include <lemon/concept_check.h>
[220]29#include <lemon/core.h>
[57]30
31namespace lemon {
32  namespace concepts {
33
34    /// \ingroup graph_concepts
35    ///
[734]36    /// \brief Class describing the concept of undirected graphs.
[57]37    ///
[734]38    /// This class describes the common interface of all undirected
39    /// graphs.
[57]40    ///
[734]41    /// Like all concept classes, it only provides an interface
42    /// without any sensible implementation. So any general algorithm for
43    /// undirected graphs should compile with this class, but it will not
[57]44    /// run properly, of course.
[734]45    /// An actual graph implementation like \ref ListGraph or
46    /// \ref SmartGraph may have additional functionality.   
[57]47    ///
[734]48    /// The undirected graphs also fulfill the concept of \ref Digraph
49    /// "directed graphs", since each edge can also be regarded as two
50    /// oppositely directed arcs.
51    /// Undirected graphs provide an Edge type for the undirected edges and
52    /// an Arc type for the directed arcs. The Arc type is convertible to
53    /// Edge or inherited from it, i.e. the corresponding edge can be
54    /// obtained from an arc.
55    /// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt
56    /// and ArcMap classes can be used for the arcs (just like in digraphs).
57    /// Both InArcIt and OutArcIt iterates on the same edges but with
58    /// opposite direction. IncEdgeIt also iterates on the same edges
59    /// as OutArcIt and InArcIt, but it is not convertible to Arc,
60    /// only to Edge.
[57]61    ///
[734]62    /// In LEMON, each undirected edge has an inherent orientation.
63    /// Thus it can defined if an arc is forward or backward oriented in
64    /// an undirected graph with respect to this default oriantation of
65    /// the represented edge.
66    /// With the direction() and direct() functions the direction
67    /// of an arc can be obtained and set, respectively.
[57]68    ///
[734]69    /// Only nodes and edges can be added to or removed from an undirected
70    /// graph and the corresponding arcs are added or removed automatically.
71    ///
72    /// \sa Digraph
[57]73    class Graph {
[734]74    private:
75      /// Graphs are \e not copy constructible. Use DigraphCopy instead.
76      Graph(const Graph&) {}
77      /// \brief Assignment of a graph to another one is \e not allowed.
78      /// Use DigraphCopy instead.
79      void operator=(const Graph&) {}
80
[57]81    public:
[734]82      /// Default constructor.
83      Graph() {}
84
85      /// \brief Undirected graphs should be tagged with \c UndirectedTag.
[57]86      ///
[734]87      /// Undirected graphs should be tagged with \c UndirectedTag.
88      ///
89      /// This tag helps the \c enable_if technics to make compile time
[209]90      /// specializations for undirected graphs.
[57]91      typedef True UndirectedTag;
92
[734]93      /// The node type of the graph
94
95      /// This class identifies a node of the graph. It also serves
96      /// as a base class of the node iterators,
97      /// thus they convert to this type.
[57]98      class Node {
99      public:
100        /// Default constructor
101
[734]102        /// Default constructor.
103        /// \warning It sets the object to an undefined value.
[57]104        Node() { }
105        /// Copy constructor.
106
107        /// Copy constructor.
108        ///
109        Node(const Node&) { }
110
[734]111        /// %Invalid constructor \& conversion.
[57]112
[734]113        /// Initializes the object to be invalid.
[57]114        /// \sa Invalid for more details.
115        Node(Invalid) { }
116        /// Equality operator
117
[734]118        /// Equality operator.
119        ///
[57]120        /// Two iterators are equal if and only if they point to the
[734]121        /// same object or both are \c INVALID.
[57]122        bool operator==(Node) const { return true; }
123
124        /// Inequality operator
[209]125
[734]126        /// Inequality operator.
[57]127        bool operator!=(Node) const { return true; }
128
[209]129        /// Artificial ordering operator.
130
[734]131        /// Artificial ordering operator.
[209]132        ///
[734]133        /// \note This operator only has to define some strict ordering of
[209]134        /// the items; this order has nothing to do with the iteration
135        /// ordering of the items.
136        bool operator<(Node) const { return false; }
[57]137
138      };
[209]139
[734]140      /// Iterator class for the nodes.
[57]141
[734]142      /// This iterator goes through each node of the graph.
[786]143      /// Its usage is quite simple, for example, you can count the number
[734]144      /// of nodes in a graph \c g of type \c %Graph like this:
[57]145      ///\code
146      /// int count=0;
147      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
148      ///\endcode
149      class NodeIt : public Node {
150      public:
151        /// Default constructor
152
[734]153        /// Default constructor.
154        /// \warning It sets the iterator to an undefined value.
[57]155        NodeIt() { }
156        /// Copy constructor.
[209]157
[57]158        /// Copy constructor.
159        ///
160        NodeIt(const NodeIt& n) : Node(n) { }
[734]161        /// %Invalid constructor \& conversion.
[57]162
[734]163        /// Initializes the iterator to be invalid.
[57]164        /// \sa Invalid for more details.
165        NodeIt(Invalid) { }
166        /// Sets the iterator to the first node.
167
[734]168        /// Sets the iterator to the first node of the given digraph.
[57]169        ///
[734]170        explicit NodeIt(const Graph&) { }
171        /// Sets the iterator to the given node.
[57]172
[734]173        /// Sets the iterator to the given node of the given digraph.
174        ///
[57]175        NodeIt(const Graph&, const Node&) { }
176        /// Next node.
177
178        /// Assign the iterator to the next node.
179        ///
180        NodeIt& operator++() { return *this; }
181      };
[209]182
183
[734]184      /// The edge type of the graph
[57]185
[734]186      /// This class identifies an edge of the graph. It also serves
187      /// as a base class of the edge iterators,
188      /// thus they will convert to this type.
[57]189      class Edge {
190      public:
191        /// Default constructor
192
[734]193        /// Default constructor.
194        /// \warning It sets the object to an undefined value.
[57]195        Edge() { }
196        /// Copy constructor.
197
198        /// Copy constructor.
199        ///
200        Edge(const Edge&) { }
[734]201        /// %Invalid constructor \& conversion.
[57]202
[734]203        /// Initializes the object to be invalid.
204        /// \sa Invalid for more details.
[57]205        Edge(Invalid) { }
206        /// Equality operator
207
[734]208        /// Equality operator.
209        ///
[57]210        /// Two iterators are equal if and only if they point to the
[734]211        /// same object or both are \c INVALID.
[57]212        bool operator==(Edge) const { return true; }
213        /// Inequality operator
214
[734]215        /// Inequality operator.
[57]216        bool operator!=(Edge) const { return true; }
217
[209]218        /// Artificial ordering operator.
219
[734]220        /// Artificial ordering operator.
[209]221        ///
[734]222        /// \note This operator only has to define some strict ordering of
223        /// the edges; this order has nothing to do with the iteration
224        /// ordering of the edges.
[209]225        bool operator<(Edge) const { return false; }
[57]226      };
227
[734]228      /// Iterator class for the edges.
[57]229
[734]230      /// This iterator goes through each edge of the graph.
[786]231      /// Its usage is quite simple, for example, you can count the number
[734]232      /// of edges in a graph \c g of type \c %Graph as follows:
[57]233      ///\code
234      /// int count=0;
235      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
236      ///\endcode
237      class EdgeIt : public Edge {
238      public:
239        /// Default constructor
240
[734]241        /// Default constructor.
242        /// \warning It sets the iterator to an undefined value.
[57]243        EdgeIt() { }
244        /// Copy constructor.
245
246        /// Copy constructor.
247        ///
248        EdgeIt(const EdgeIt& e) : Edge(e) { }
[734]249        /// %Invalid constructor \& conversion.
[57]250
[734]251        /// Initializes the iterator to be invalid.
252        /// \sa Invalid for more details.
253        EdgeIt(Invalid) { }
254        /// Sets the iterator to the first edge.
255
256        /// Sets the iterator to the first edge of the given graph.
[57]257        ///
[734]258        explicit EdgeIt(const Graph&) { }
259        /// Sets the iterator to the given edge.
[209]260
[734]261        /// Sets the iterator to the given edge of the given graph.
262        ///
[209]263        EdgeIt(const Graph&, const Edge&) { }
[57]264        /// Next edge
[209]265
[57]266        /// Assign the iterator to the next edge.
[734]267        ///
[57]268        EdgeIt& operator++() { return *this; }
269      };
270
[734]271      /// Iterator class for the incident edges of a node.
272
273      /// This iterator goes trough the incident undirected edges
274      /// of a certain node of a graph.
[786]275      /// Its usage is quite simple, for example, you can compute the
[734]276      /// degree (i.e. the number of incident edges) of a node \c n
277      /// in a graph \c g of type \c %Graph as follows.
[57]278      ///
279      ///\code
280      /// int count=0;
[78]281      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
[57]282      ///\endcode
[734]283      ///
284      /// \warning Loop edges will be iterated twice.
[78]285      class IncEdgeIt : public Edge {
[57]286      public:
287        /// Default constructor
288
[734]289        /// Default constructor.
290        /// \warning It sets the iterator to an undefined value.
[78]291        IncEdgeIt() { }
[57]292        /// Copy constructor.
293
294        /// Copy constructor.
295        ///
[78]296        IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
[734]297        /// %Invalid constructor \& conversion.
[57]298
[734]299        /// Initializes the iterator to be invalid.
300        /// \sa Invalid for more details.
301        IncEdgeIt(Invalid) { }
302        /// Sets the iterator to the first incident edge.
303
304        /// Sets the iterator to the first incident edge of the given node.
[57]305        ///
[734]306        IncEdgeIt(const Graph&, const Node&) { }
307        /// Sets the iterator to the given edge.
[209]308
[734]309        /// Sets the iterator to the given edge of the given graph.
310        ///
311        IncEdgeIt(const Graph&, const Edge&) { }
312        /// Next incident edge
[57]313
[734]314        /// Assign the iterator to the next incident edge
[209]315        /// of the corresponding node.
[78]316        IncEdgeIt& operator++() { return *this; }
[57]317      };
318
[734]319      /// The arc type of the graph
[57]320
[734]321      /// This class identifies a directed arc of the graph. It also serves
322      /// as a base class of the arc iterators,
323      /// thus they will convert to this type.
[657]324      class Arc {
[57]325      public:
326        /// Default constructor
327
[734]328        /// Default constructor.
329        /// \warning It sets the object to an undefined value.
[57]330        Arc() { }
331        /// Copy constructor.
332
333        /// Copy constructor.
334        ///
[657]335        Arc(const Arc&) { }
[734]336        /// %Invalid constructor \& conversion.
[57]337
[734]338        /// Initializes the object to be invalid.
339        /// \sa Invalid for more details.
[57]340        Arc(Invalid) { }
341        /// Equality operator
342
[734]343        /// Equality operator.
344        ///
[57]345        /// Two iterators are equal if and only if they point to the
[734]346        /// same object or both are \c INVALID.
[57]347        bool operator==(Arc) const { return true; }
348        /// Inequality operator
349
[734]350        /// Inequality operator.
[57]351        bool operator!=(Arc) const { return true; }
352
[209]353        /// Artificial ordering operator.
354
[734]355        /// Artificial ordering operator.
[209]356        ///
[734]357        /// \note This operator only has to define some strict ordering of
358        /// the arcs; this order has nothing to do with the iteration
359        /// ordering of the arcs.
[209]360        bool operator<(Arc) const { return false; }
361
[734]362        /// Converison to \c Edge
363       
364        /// Converison to \c Edge.
365        ///
[657]366        operator Edge() const { return Edge(); }
[209]367      };
[57]368
[734]369      /// Iterator class for the arcs.
370
371      /// This iterator goes through each directed arc of the graph.
[786]372      /// Its usage is quite simple, for example, you can count the number
[734]373      /// of arcs in a graph \c g of type \c %Graph as follows:
[57]374      ///\code
375      /// int count=0;
[734]376      /// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count;
[57]377      ///\endcode
378      class ArcIt : public Arc {
379      public:
380        /// Default constructor
381
[734]382        /// Default constructor.
383        /// \warning It sets the iterator to an undefined value.
[57]384        ArcIt() { }
385        /// Copy constructor.
386
387        /// Copy constructor.
388        ///
389        ArcIt(const ArcIt& e) : Arc(e) { }
[734]390        /// %Invalid constructor \& conversion.
[57]391
[734]392        /// Initializes the iterator to be invalid.
393        /// \sa Invalid for more details.
394        ArcIt(Invalid) { }
395        /// Sets the iterator to the first arc.
396
397        /// Sets the iterator to the first arc of the given graph.
[57]398        ///
[734]399        explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
400        /// Sets the iterator to the given arc.
[209]401
[734]402        /// Sets the iterator to the given arc of the given graph.
403        ///
[209]404        ArcIt(const Graph&, const Arc&) { }
[734]405        /// Next arc
[209]406
[57]407        /// Assign the iterator to the next arc.
[734]408        ///
[57]409        ArcIt& operator++() { return *this; }
410      };
[209]411
[734]412      /// Iterator class for the outgoing arcs of a node.
[57]413
[734]414      /// This iterator goes trough the \e outgoing directed arcs of a
415      /// certain node of a graph.
[786]416      /// Its usage is quite simple, for example, you can count the number
[57]417      /// of outgoing arcs of a node \c n
[734]418      /// in a graph \c g of type \c %Graph as follows.
[57]419      ///\code
420      /// int count=0;
[734]421      /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
[57]422      ///\endcode
423      class OutArcIt : public Arc {
424      public:
425        /// Default constructor
426
[734]427        /// Default constructor.
428        /// \warning It sets the iterator to an undefined value.
[57]429        OutArcIt() { }
430        /// Copy constructor.
431
432        /// Copy constructor.
433        ///
434        OutArcIt(const OutArcIt& e) : Arc(e) { }
[734]435        /// %Invalid constructor \& conversion.
[57]436
[734]437        /// Initializes the iterator to be invalid.
438        /// \sa Invalid for more details.
439        OutArcIt(Invalid) { }
440        /// Sets the iterator to the first outgoing arc.
441
442        /// Sets the iterator to the first outgoing arc of the given node.
[57]443        ///
444        OutArcIt(const Graph& n, const Node& g) {
[209]445          ignore_unused_variable_warning(n);
446          ignore_unused_variable_warning(g);
447        }
[734]448        /// Sets the iterator to the given arc.
[57]449
[734]450        /// Sets the iterator to the given arc of the given graph.
451        ///
[57]452        OutArcIt(const Graph&, const Arc&) { }
[734]453        /// Next outgoing arc
[209]454
455        /// Assign the iterator to the next
[57]456        /// outgoing arc of the corresponding node.
457        OutArcIt& operator++() { return *this; }
458      };
459
[734]460      /// Iterator class for the incoming arcs of a node.
[57]461
[734]462      /// This iterator goes trough the \e incoming directed arcs of a
463      /// certain node of a graph.
[786]464      /// Its usage is quite simple, for example, you can count the number
[734]465      /// of incoming arcs of a node \c n
466      /// in a graph \c g of type \c %Graph as follows.
[57]467      ///\code
468      /// int count=0;
[734]469      /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
[57]470      ///\endcode
471      class InArcIt : public Arc {
472      public:
473        /// Default constructor
474
[734]475        /// Default constructor.
476        /// \warning It sets the iterator to an undefined value.
[57]477        InArcIt() { }
478        /// Copy constructor.
479
480        /// Copy constructor.
481        ///
482        InArcIt(const InArcIt& e) : Arc(e) { }
[734]483        /// %Invalid constructor \& conversion.
[57]484
[734]485        /// Initializes the iterator to be invalid.
486        /// \sa Invalid for more details.
487        InArcIt(Invalid) { }
488        /// Sets the iterator to the first incoming arc.
489
490        /// Sets the iterator to the first incoming arc of the given node.
[57]491        ///
[209]492        InArcIt(const Graph& g, const Node& n) {
493          ignore_unused_variable_warning(n);
494          ignore_unused_variable_warning(g);
495        }
[734]496        /// Sets the iterator to the given arc.
[57]497
[734]498        /// Sets the iterator to the given arc of the given graph.
499        ///
[57]500        InArcIt(const Graph&, const Arc&) { }
501        /// Next incoming arc
502
[734]503        /// Assign the iterator to the next
504        /// incoming arc of the corresponding node.
[57]505        InArcIt& operator++() { return *this; }
506      };
507
[734]508      /// \brief Standard graph map type for the nodes.
[209]509      ///
[734]510      /// Standard graph map type for the nodes.
511      /// It conforms to the ReferenceMap concept.
[209]512      template<class T>
[580]513      class NodeMap : public ReferenceMap<Node, T, T&, const T&>
[57]514      {
515      public:
516
[734]517        /// Constructor
518        explicit NodeMap(const Graph&) { }
519        /// Constructor with given initial value
[57]520        NodeMap(const Graph&, T) { }
521
[263]522      private:
[57]523        ///Copy constructor
[580]524        NodeMap(const NodeMap& nm) :
525          ReferenceMap<Node, T, T&, const T&>(nm) { }
[57]526        ///Assignment operator
527        template <typename CMap>
[209]528        NodeMap& operator=(const CMap&) {
[57]529          checkConcept<ReadMap<Node, T>, CMap>();
[209]530          return *this;
[57]531        }
532      };
533
[734]534      /// \brief Standard graph map type for the arcs.
[57]535      ///
[734]536      /// Standard graph map type for the arcs.
537      /// It conforms to the ReferenceMap concept.
[209]538      template<class T>
[580]539      class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
[57]540      {
541      public:
542
[734]543        /// Constructor
544        explicit ArcMap(const Graph&) { }
545        /// Constructor with given initial value
[57]546        ArcMap(const Graph&, T) { }
[734]547
[263]548      private:
[57]549        ///Copy constructor
[580]550        ArcMap(const ArcMap& em) :
551          ReferenceMap<Arc, T, T&, const T&>(em) { }
[57]552        ///Assignment operator
553        template <typename CMap>
[209]554        ArcMap& operator=(const CMap&) {
[57]555          checkConcept<ReadMap<Arc, T>, CMap>();
[209]556          return *this;
[57]557        }
558      };
559
[734]560      /// \brief Standard graph map type for the edges.
561      ///
562      /// Standard graph map type for the edges.
563      /// It conforms to the ReferenceMap concept.
[209]564      template<class T>
[580]565      class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
[57]566      {
567      public:
568
[734]569        /// Constructor
570        explicit EdgeMap(const Graph&) { }
571        /// Constructor with given initial value
[57]572        EdgeMap(const Graph&, T) { }
[734]573
[263]574      private:
[57]575        ///Copy constructor
[580]576        EdgeMap(const EdgeMap& em) :
577          ReferenceMap<Edge, T, T&, const T&>(em) {}
[57]578        ///Assignment operator
579        template <typename CMap>
[209]580        EdgeMap& operator=(const CMap&) {
[57]581          checkConcept<ReadMap<Edge, T>, CMap>();
[209]582          return *this;
[57]583        }
584      };
585
[734]586      /// \brief The first node of the edge.
[57]587      ///
[734]588      /// Returns the first node of the given edge.
[57]589      ///
[786]590      /// Edges don't have source and target nodes, however, methods
[734]591      /// u() and v() are used to query the two end-nodes of an edge.
592      /// The orientation of an edge that arises this way is called
593      /// the inherent direction, it is used to define the default
594      /// direction for the corresponding arcs.
[559]595      /// \sa v()
596      /// \sa direction()
[57]597      Node u(Edge) const { return INVALID; }
598
[734]599      /// \brief The second node of the edge.
[559]600      ///
[734]601      /// Returns the second node of the given edge.
[559]602      ///
[786]603      /// Edges don't have source and target nodes, however, methods
[734]604      /// u() and v() are used to query the two end-nodes of an edge.
605      /// The orientation of an edge that arises this way is called
606      /// the inherent direction, it is used to define the default
607      /// direction for the corresponding arcs.
[559]608      /// \sa u()
609      /// \sa direction()
[57]610      Node v(Edge) const { return INVALID; }
611
[734]612      /// \brief The source node of the arc.
613      ///
614      /// Returns the source node of the given arc.
[57]615      Node source(Arc) const { return INVALID; }
616
[734]617      /// \brief The target node of the arc.
618      ///
619      /// Returns the target node of the given arc.
[57]620      Node target(Arc) const { return INVALID; }
621
[734]622      /// \brief The ID of the node.
623      ///
624      /// Returns the ID of the given node.
[209]625      int id(Node) const { return -1; }
[61]626
[734]627      /// \brief The ID of the edge.
628      ///
629      /// Returns the ID of the given edge.
[209]630      int id(Edge) const { return -1; }
[61]631
[734]632      /// \brief The ID of the arc.
633      ///
634      /// Returns the ID of the given arc.
[209]635      int id(Arc) const { return -1; }
[61]636
[734]637      /// \brief The node with the given ID.
[61]638      ///
[734]639      /// Returns the node with the given ID.
640      /// \pre The argument should be a valid node ID in the graph.
[209]641      Node nodeFromId(int) const { return INVALID; }
[61]642
[734]643      /// \brief The edge with the given ID.
[61]644      ///
[734]645      /// Returns the edge with the given ID.
646      /// \pre The argument should be a valid edge ID in the graph.
[209]647      Edge edgeFromId(int) const { return INVALID; }
[61]648
[734]649      /// \brief The arc with the given ID.
[61]650      ///
[734]651      /// Returns the arc with the given ID.
652      /// \pre The argument should be a valid arc ID in the graph.
[209]653      Arc arcFromId(int) const { return INVALID; }
[61]654
[734]655      /// \brief An upper bound on the node IDs.
656      ///
657      /// Returns an upper bound on the node IDs.
[209]658      int maxNodeId() const { return -1; }
[61]659
[734]660      /// \brief An upper bound on the edge IDs.
661      ///
662      /// Returns an upper bound on the edge IDs.
[209]663      int maxEdgeId() const { return -1; }
[61]664
[734]665      /// \brief An upper bound on the arc IDs.
666      ///
667      /// Returns an upper bound on the arc IDs.
[209]668      int maxArcId() const { return -1; }
[61]669
[734]670      /// \brief The direction of the arc.
671      ///
672      /// Returns \c true if the direction of the given arc is the same as
673      /// the inherent orientation of the represented edge.
674      bool direction(Arc) const { return true; }
675
676      /// \brief Direct the edge.
677      ///
678      /// Direct the given edge. The returned arc
679      /// represents the given edge and its direction comes
680      /// from the bool parameter. If it is \c true, then the direction
681      /// of the arc is the same as the inherent orientation of the edge.
682      Arc direct(Edge, bool) const {
683        return INVALID;
684      }
685
686      /// \brief Direct the edge.
687      ///
688      /// Direct the given edge. The returned arc represents the given
689      /// edge and its source node is the given node.
690      Arc direct(Edge, Node) const {
691        return INVALID;
692      }
693
694      /// \brief The oppositely directed arc.
695      ///
696      /// Returns the oppositely directed arc representing the same edge.
697      Arc oppositeArc(Arc) const { return INVALID; }
698
699      /// \brief The opposite node on the edge.
700      ///
701      /// Returns the opposite node on the given edge.
702      Node oppositeNode(Node, Edge) const { return INVALID; }
703
[57]704      void first(Node&) const {}
705      void next(Node&) const {}
706
707      void first(Edge&) const {}
708      void next(Edge&) const {}
709
710      void first(Arc&) const {}
711      void next(Arc&) const {}
712
713      void firstOut(Arc&, Node) const {}
714      void nextOut(Arc&) const {}
715
716      void firstIn(Arc&, Node) const {}
717      void nextIn(Arc&) const {}
718
719      void firstInc(Edge &, bool &, const Node &) const {}
720      void nextInc(Edge &, bool &) const {}
721
[61]722      // The second parameter is dummy.
723      Node fromId(int, Node) const { return INVALID; }
724      // The second parameter is dummy.
725      Edge fromId(int, Edge) const { return INVALID; }
726      // The second parameter is dummy.
727      Arc fromId(int, Arc) const { return INVALID; }
728
729      // Dummy parameter.
[209]730      int maxId(Node) const { return -1; }
[61]731      // Dummy parameter.
[209]732      int maxId(Edge) const { return -1; }
[61]733      // Dummy parameter.
[209]734      int maxId(Arc) const { return -1; }
[61]735
[734]736      /// \brief The base node of the iterator.
[57]737      ///
[734]738      /// Returns the base node of the given incident edge iterator.
739      Node baseNode(IncEdgeIt) const { return INVALID; }
740
741      /// \brief The running node of the iterator.
[57]742      ///
[734]743      /// Returns the running node of the given incident edge iterator.
744      Node runningNode(IncEdgeIt) const { return INVALID; }
[57]745
[734]746      /// \brief The base node of the iterator.
[57]747      ///
[734]748      /// Returns the base node of the given outgoing arc iterator
749      /// (i.e. the source node of the corresponding arc).
750      Node baseNode(OutArcIt) const { return INVALID; }
751
752      /// \brief The running node of the iterator.
[57]753      ///
[734]754      /// Returns the running node of the given outgoing arc iterator
755      /// (i.e. the target node of the corresponding arc).
756      Node runningNode(OutArcIt) const { return INVALID; }
[57]757
[734]758      /// \brief The base node of the iterator.
[57]759      ///
[734]760      /// Returns the base node of the given incomming arc iterator
761      /// (i.e. the target node of the corresponding arc).
762      Node baseNode(InArcIt) const { return INVALID; }
[209]763
[734]764      /// \brief The running node of the iterator.
[57]765      ///
[734]766      /// Returns the running node of the given incomming arc iterator
767      /// (i.e. the source node of the corresponding arc).
768      Node runningNode(InArcIt) const { return INVALID; }
[57]769
[125]770      template <typename _Graph>
[57]771      struct Constraints {
[209]772        void constraints() {
[580]773          checkConcept<BaseGraphComponent, _Graph>();
[209]774          checkConcept<IterableGraphComponent<>, _Graph>();
775          checkConcept<IDableGraphComponent<>, _Graph>();
776          checkConcept<MappableGraphComponent<>, _Graph>();
777        }
[57]778      };
779
780    };
781
782  }
783
784}
785
786#endif
Note: See TracBrowser for help on using the repository browser.